Feeds

Super-thin materials could POWER our WORLD

Basic research on 1-atom-thick nanosheets shows many hypothetical uses

Secure remote control for conventional and virtual desktops

Oxford and Dublin boffins have unlocked a doorway leading to more than 150 super-thin exotic nanosheet materials just one atom thick.

The names sound like a chemist's molecular roll call: boron nitride (BN), molybdenum disulphide (MoS2), and bismuth telluride (Bi2Te3). None of these compounds are new – but single-atom-thick* crystals or flakes made of of these compounds would be. Freed from characteristics caused as a result of them being in instantiations multiple atoms thick, they can – among other things – become vastly better thermoelectric devices, generating electricity from heat.

The research was carried out by a team of boffins led by CRANN (Center for Research on Adaptive Nanostructures and Nanodevices), Dublin's Trinity College and the University of Oxford. What this team has done, following the example set by Russian Nobel Prize-winning boffins last year with graphene, a similarly two-dimensional material – if you regard single-atom thickness as being equivalent to having no thickness dimension. Individual flakes of graphene have electronic and mechanical properties that are very different from its parent crystal material, graphite.

Graphite is a layered crystal material and, apparently, there are more than 150 of these materials which could be used, in theory, to create single-atom-thick flakes that can be metallic, insulating or semi-conducting according to their chemical composition and atomic arrangement. They could be used as super-capacitators, providing energy thousands of times faster than batteries; reinforcing components to plastics to add strength; or as thermoelectric devices, providing electricity from heat. This latter application has a green aspect: waste heat from industrial and other processes could be used to generate electricity and so recycle the otherwise lost heat energy.

The Trinity College release quotes Professor Jonathan Coleman of its School of Physics, also Principle Investigator at CRANN. He said: "In gas-fired power plants, approximately 50 per cent of energy produced is lost as waste heat, while for coal and oil plants the figure is up to 70 per cent ... the development of efficient thermoelectric devices would allow some of this waste heat to be recycled cheaply and easily, something that has been beyond us, up until now."

The boffinry here is in crafting the nanosheets by applying ultrasound to parent crystals and dissolving the exfoliated bits in common or garden industrial solvents. Existing methods are labourious, low-yield and take a long time. The new way of crafting nanosheets has high yields, is low-cost, and offers a lot of throughput. Dr Valeria Nicolosi, of the Department of Materials at the University of Oxford, said: "Within a couple of hours, and with just 1mg of material, billions and billions of one-atom-thick nanosheets can be made at the same time from a wide variety of exotic layered materials."

You could use the stuff by depositing nanosheets of crystals or film on a base layer to create a device with properties that you want, once you understand which properties are associated with which nanosheet material. The research is all on its potential for now, but the boffins have 150 or so nanosheet material possibilities to play with. There are more details in a paper published by the Science journal (abstract), but you'll need a subscription or pay a read fee to get at it. Where's WikiLeaks when you need it? ®

Bootnote

The Science journal abstract says: "Electron microscopy strongly suggests that the material is exfoliated into individual layers." In other words the boffins don't know for sure.

Next gen security for virtualised datacentres

More from The Register

next story
Vulture 2 takes a battering in 100km/h test run
Still in one piece, but we're going to need MORE POWER
TRIANGULAR orbits will help Rosetta to get up close with Comet 67P
Probe will be just 10km from Space Duck in October
Boffins ID freakish spine-smothered prehistoric critter: The CLAW gave it away
Bizarre-looking creature actually related to velvet worms
CRR-CRRRK, beep, beep: Mars space truck backs out of slippery sand trap
Curiosity finds new drilling target after course correction
What does a flashmob of 1,024 robots look like? Just like this
Sorry, Harvard, did you say kilobots or KILLER BOTS?
NASA's rock'n'roll shock: ROLLING STONE FOUND ON MARS
No sign of Ziggy Stardust and his band
Why your mum was WRONG about whiffy tattooed people
They're a future source of RENEWABLE ENERGY
Vulture 2 spaceplane autopilot brain surgery a total success
LOHAN slips into some sexy bespoke mission parameters
LOHAN acquires aircraft arboreal avoidance algorithm acronyms
Is that an ARMADILLO in your PANTS or are you just pleased to see me?
prev story

Whitepapers

5 things you didn’t know about cloud backup
IT departments are embracing cloud backup, but there’s a lot you need to know before choosing a service provider. Learn all the critical things you need to know.
Implementing global e-invoicing with guaranteed legal certainty
Explaining the role local tax compliance plays in successful supply chain management and e-business and how leading global brands are addressing this.
Build a business case: developing custom apps
Learn how to maximize the value of custom applications by accelerating and simplifying their development.
Rethinking backup and recovery in the modern data center
Combining intelligence, operational analytics, and automation to enable efficient, data-driven IT organizations using the HP ABR approach.
Next gen security for virtualised datacentres
Legacy security solutions are inefficient due to the architectural differences between physical and virtual environments.