Feeds

US air force has new scramjet hypersonic plane plans

Son of Blackswift, grandson of SR-71 Blackbird spy plane

High performance access to file storage

Who remembers the Blackswift – the planned hypersonic successor to the legendary SR-71 Blackbird spy plane of Cold War fame? The Blackswift was intended to take off and land from a runway like a normal plane and achieve speeds of Mach 6 on scramjet propulsion (comfortably eclipsing its illustrious turbo/ramjet predecessor's Mach 3.5) – and carry out a barrel roll while doing so.

Unfortunately for lovers of spiffy hyperplanes, the Blackswift (aka Falcon HTV-3X, as seen above) never got off the drawing board. Its funding was cut by sceptical politicoes back in 2008, and since then the US military has had to content itself with the missile-style WaveRider testbed. The WaveRider will not develop into a reusable aircraft: it is released at height from a B-52 bomber, accelerates to Mach 4.5 using a rocket booster, and then lights up its scramjet to accelerate – its designers hope – to Mach 6. In its only live test so far, however, the WaveRider topped out at Mach 5 in what was described as a partial success.

From a military point of view, the idea of hypersonic scramjet missiles is mildly interesting, though somewhat marginal: after all, if a warhead really needs to get somewhere in a hurry, one can simply fire it out of the atmosphere on a multistage space rocket (aka Intercontinental Ballistic Missile) and so avoid all the problems of high speed in an atmosphere.

But in civilian life we might like to move from having to use expensive, throwaway multistage rockets every time we want to put something into space. We might also like our orbital launch vehicles, as well as being much more reusable than a rocket stack or a Space Shuttle package, to use atmospheric oxygen in place of some or all of the huge amounts of oxidiser that rockets must carry to burn their fuel with. Also, we'd like to avoid the huge expense and trouble involved in pointing heavy vehicles vertically up into the sky for launch – we'd like runway takeoff as well as runway landing.

That's why people found the Blackswift exciting: while it was never intended to reach the Mach-25-equivalent speeds needed to achieve orbit, it was going to be a big step forward from the SR-71, previously the benchmark for sustained, practical-ish high-speed air breathing flight from a runway. Like its illustrious forebear, the Blackswift was to burn relatively normal JP-7 jet fuel rather than impractical, dangerous, bulky hydrogen; like the Blackbird, it was to take off and land on a runway and make no use of throwaway booster rockets to get up to ignition speed*.

And that's why today is an exciting day, because news has arrived that Blackswift is not dead after all. The US Air Force, we learn from Aviation Week, has revived the aspiration for a reusable, hydrocarbon-fuelled runway hyperplane under the new name "High-Speed Reusable Flight Research Vehicle" (HSRFRV). Lovers of hyperplanes will need to be patient, however, as the USAF intends to take a cautious path toward building the new Blackswift; it is not expected to fly until 2021, following years of trials and tests with WaveRider-derived missile-style weapon carriers.

These early tests – which might lead to a hypersonic scramjet missile that could fit into the weapons bay of a B-2 stealth bomber – would prove the main new technology required to beat the SR-71 Blackbird: that is, hydrocarbon-burning scramjets. The Blackbird was propelled down the runway and up to high speed by two hefty afterburning turbojets which were mounted inside cunning nacelles fitted with a retractable spike. At high supersonic speed, these nacelles functioned as ramjets and the turbojets nested within them were superseded, effectively acting as fuel injectors for the ramjet combustion chambers.

But a regular ramjet, even when travelling supersonically itself, slows down the flow of air through its combustion chamber to subsonic speed in order to avoid blowing out the flame. As speed climbs through the low Mach numbers this causes unacceptable levels of drag to build up, which is why the SR-71 couldn't beat Mach 3.5 or so.

High performance access to file storage

More from The Register

next story
Video games make you NASTY AND VIOLENT
Especially if you are bad at them and keep losing
Elon Musk's LEAKY THRUSTER gas stalls Space Station supply run
Helium seeps from Falcon 9 first stage, delays new legs for NASA robonaut
Solar-powered aircraft unveiled for round-the-world flight
It's going to be a slow and sleepy flight for the pilots
Russian deputy PM: 'We are coming to the Moon FOREVER'
Plans to annex Earth's satellite with permanent base by 2030
LOHAN's Punch and Judy show relaunches Thursday
Weather looking good for second pop at test flights
Discovery time for 200m WONDER MATERIALS shaved from 4 MILLENNIA... to 4 years
Alloy, Alloy: Boffins in speed-classification breakthrough
India's GPS alternative launches second satellite
Closed satnav system due to have all seven birds aloft by 2016
Curiosity finds not-very-Australian-shaped rock on Mars
File under 'messianic pastries' and move on, people
prev story

Whitepapers

Mainstay ROI - Does application security pay?
In this whitepaper learn how you and your enterprise might benefit from better software security.
Five 3D headsets to be won!
We were so impressed by the Durovis Dive headset we’ve asked the company to give some away to Reg readers.
3 Big data security analytics techniques
Applying these Big Data security analytics techniques can help you make your business safer by detecting attacks early, before significant damage is done.
The benefits of software based PBX
Why you should break free from your proprietary PBX and how to leverage your existing server hardware.
Mobile application security study
Download this report to see the alarming realities regarding the sheer number of applications vulnerable to attack, as well as the most common and easily addressable vulnerability errors.