Feeds

Thunderstorms found to squirt antimatter into space

NASA sat pelted with positrons from around planet

Secure remote control for conventional and virtual desktops

Top NASA boffins analysing data from a gamma-ray telescope satellite in orbit above the Earth say they have discovered that thunderstorms, in addition to the various other things they do, emit "beams of antimatter" out of their tops.

"These signals are the first direct evidence that thunderstorms make antimatter particle beams," said Michael Briggs, a member of NASA's Gamma-ray Burst Monitor (GBM) team. Briggs was addressing a conference in Seattle this week.

The GBM whose readings Briggs and his colleagues have been poring over is mounted aboard the Fermi gamma-ray space telescope. Though primarily intended to peer deep into the universe to probe the various kinds of high-energy events which produce gamma rays (punchiest of all the various types of radiation to be found along the electromagnetic spectrum), Fermi has also proven handy for observing things on the Earth beneath it.

Specifically, Briggs and his chums have been using the gamma burst instrument to observe a phenomenon known as terrestrial gamma flashes (TGFs), brief bursts of intense radiation associated with lightning storms. Something on the order of 500 TGFs are thought to occur worldwide every day, but normally they pass undetected - Fermi has logged just 130 since being launched in 2008.

Quite apart from gamma ray blasts, already pretty high powered stuff, the Fermi boffins now believe that TGF events also cause thunderstorms to cough antimatter (in the form of positrons, anti-electrons) out of the upper atmosphere as well. In one particular case, a powerful thunderstorm over Zambia actually peppered the Fermi spacecraft with positrons despite the fact that Fermi was 2,800 miles away above Egypt at the time.

This might seem to be impossible, as the spacecraft's low orbit meant that it was shielded from the thunderstorm by the curvature of the Earth - the storm was well below its horizon. But the high-energy positrons belching from the top of the storm, being charged, were naturally affected by the Earth's magnetic field.

"Even though Fermi couldn't see the storm, the spacecraft nevertheless was magnetically connected to it," says Joseph Dwyer, another NASA gamma boffin. "The TGF produced high-speed electrons and positrons, which then rode up Earth's magnetic field to strike the spacecraft."

Rather than zapping out into space on a straight line like the gamma rays, the antimatter hurtled round the planet along the curving field lines and struck the orbiting Fermi. The positrons then annihilated themselves as they encountered normal matter within the satellite, and the entire mass involved was converted into more gamma rays: ones with the giveaway energy of 511,000 electron-volts, a sure sign that positrons have been annihilating themselves. These rays were of course sniffed at once by the GBM, much to the gratification of Briggs, Dwyer and their colleagues.

"The Fermi results put us a step closer to understanding how TGFs work," said Steven Cummer, also of the Fermi boffinry crew. "We still have to figure out what is special about these storms and the precise role lightning plays in the process."

There's more on the thunderstorm gamma-ray antimatter space blast discoveries here, courtesy of NASA. ®

Boost IT visibility and business value

More from The Register

next story
SpaceX prototype rocket EXPLODES over Texas. 'Tricky' biz, says Elon Musk
No injuries or near injuries. Flight stayed in designated area
Cutting cancer rates: Data, models and a happy ending?
How surgery might be making cancer prognoses worse
Boffins ID freakish spine-smothered prehistoric critter: The CLAW gave it away
Bizarre-looking creature actually related to velvet worms
CRR-CRRRK, beep, beep: Mars space truck backs out of slippery sand trap
Curiosity finds new drilling target after course correction
Brit balloon bod Bodnar overflies North Pole
B-64 amateur ultralight payload approaching second circumnavigation
Galileo, Galileo! Galileo, Galileo! Galileo fit to go. Magnifico
I'm just a poor boy, nobody loves me. But at least I can find my way with ESA GPS by 2017
Astronomers scramble for obs on new comet
Amateur gets fifth confirmed discovery
Boffins build CYBORG-MOTHRA but not for evil: For search & rescue
This tiny bio-bot will chew through your clothes then save your life
prev story

Whitepapers

Implementing global e-invoicing with guaranteed legal certainty
Explaining the role local tax compliance plays in successful supply chain management and e-business and how leading global brands are addressing this.
5 things you didn’t know about cloud backup
IT departments are embracing cloud backup, but there’s a lot you need to know before choosing a service provider. Learn all the critical things you need to know.
Why and how to choose the right cloud vendor
The benefits of cloud-based storage in your processes. Eliminate onsite, disk-based backup and archiving in favor of cloud-based data protection.
Top 8 considerations to enable and simplify mobility
In this whitepaper learn how to successfully add mobile capabilities simply and cost effectively.
High Performance for All
While HPC is not new, it has traditionally been seen as a specialist area – is it now geared up to meet more mainstream requirements?