Feeds

Thunderstorms found to squirt antimatter into space

NASA sat pelted with positrons from around planet

Choosing a cloud hosting partner with confidence

Top NASA boffins analysing data from a gamma-ray telescope satellite in orbit above the Earth say they have discovered that thunderstorms, in addition to the various other things they do, emit "beams of antimatter" out of their tops.

"These signals are the first direct evidence that thunderstorms make antimatter particle beams," said Michael Briggs, a member of NASA's Gamma-ray Burst Monitor (GBM) team. Briggs was addressing a conference in Seattle this week.

The GBM whose readings Briggs and his colleagues have been poring over is mounted aboard the Fermi gamma-ray space telescope. Though primarily intended to peer deep into the universe to probe the various kinds of high-energy events which produce gamma rays (punchiest of all the various types of radiation to be found along the electromagnetic spectrum), Fermi has also proven handy for observing things on the Earth beneath it.

Specifically, Briggs and his chums have been using the gamma burst instrument to observe a phenomenon known as terrestrial gamma flashes (TGFs), brief bursts of intense radiation associated with lightning storms. Something on the order of 500 TGFs are thought to occur worldwide every day, but normally they pass undetected - Fermi has logged just 130 since being launched in 2008.

Quite apart from gamma ray blasts, already pretty high powered stuff, the Fermi boffins now believe that TGF events also cause thunderstorms to cough antimatter (in the form of positrons, anti-electrons) out of the upper atmosphere as well. In one particular case, a powerful thunderstorm over Zambia actually peppered the Fermi spacecraft with positrons despite the fact that Fermi was 2,800 miles away above Egypt at the time.

This might seem to be impossible, as the spacecraft's low orbit meant that it was shielded from the thunderstorm by the curvature of the Earth - the storm was well below its horizon. But the high-energy positrons belching from the top of the storm, being charged, were naturally affected by the Earth's magnetic field.

"Even though Fermi couldn't see the storm, the spacecraft nevertheless was magnetically connected to it," says Joseph Dwyer, another NASA gamma boffin. "The TGF produced high-speed electrons and positrons, which then rode up Earth's magnetic field to strike the spacecraft."

Rather than zapping out into space on a straight line like the gamma rays, the antimatter hurtled round the planet along the curving field lines and struck the orbiting Fermi. The positrons then annihilated themselves as they encountered normal matter within the satellite, and the entire mass involved was converted into more gamma rays: ones with the giveaway energy of 511,000 electron-volts, a sure sign that positrons have been annihilating themselves. These rays were of course sniffed at once by the GBM, much to the gratification of Briggs, Dwyer and their colleagues.

"The Fermi results put us a step closer to understanding how TGFs work," said Steven Cummer, also of the Fermi boffinry crew. "We still have to figure out what is special about these storms and the precise role lightning plays in the process."

There's more on the thunderstorm gamma-ray antimatter space blast discoveries here, courtesy of NASA. ®

Secure remote control for conventional and virtual desktops

More from The Register

next story
GRAV WAVE DRAMA: 'Big Bang echo' may have been grit on the scanner – boffins
Exit Planet Dust on faster-than-light expansion of universe
Mine Bitcoins with PENCIL and PAPER
Forget Sudoku, crunch SHA-256 algos
SpaceX Dragon cargo truck flies 3D printer to ISS: Clawdown in 3, 2...
Craft berths at space station with supplies, experiments, toys
'This BITE MARK is a SMOKING GUN': Boffins probe ancient assault
Tooth embedded in thigh bone may tell who pulled the trigger
DOLPHINS SMELL MAGNETS – did we hear that right, boffins?
Xavier's School for Gifted Magnetotaceans
Big dinosaur wowed females with its ENORMOUS HOOTER
That's right, Doris, I've got biggest snout in the prehistoric world
Japanese volcano eruption reportedly leaves 31 people presumed dead
Hopes fade of finding survivors on Mount Ontake
That glass of water you just drank? It was OLDER than the SUN
One MEELLION years older. Some of it anyway
Canberra drone team dances a samba in Outback Challenge
CSIRO's 'missing bushwalker' found and watered
prev story

Whitepapers

Forging a new future with identity relationship management
Learn about ForgeRock's next generation IRM platform and how it is designed to empower CEOS's and enterprises to engage with consumers.
Storage capacity and performance optimization at Mizuno USA
Mizuno USA turn to Tegile storage technology to solve both their SAN and backup issues.
The next step in data security
With recent increased privacy concerns and computers becoming more powerful, the chance of hackers being able to crack smaller-sized RSA keys increases.
Security for virtualized datacentres
Legacy security solutions are inefficient due to the architectural differences between physical and virtual environments.
A strategic approach to identity relationship management
ForgeRock commissioned Forrester to evaluate companies’ IAM practices and requirements when it comes to customer-facing scenarios versus employee-facing ones.