Feeds

Boffins bring us one step closer to a quantum network

One small step for storage; one giant leap for mankind

Combat fraud and increase customer satisfaction

Researchers claim to have demonstrated how it is possible to move quantum information from individual sets of multi-partite entangled atoms to four entangled beams of light (previously they had only managed with two). In simple terms, this a a big step forward in information science because it paves the way toward quantum networks.

A quantum network is a "web" composed of many interconnected quantum nodes (which work like hard drives), each of which is capable of basic quantum logic operations (Caltech says this is similar to the "AND" and "OR" gates in computers). The operations take place using "quantum transistors" and the resulting quantum states are stored in quantum memories.

Four Caltech researchers demonstrated this by mapping the transfer of the entangled photons out of and into a system of four distinct collections of atoms.

Those of you who are familiar with physics know that matter on a quantum level often contains several simultaneous possibilities. An entangled system is no different. It contains multiple possibilities for its properties.

As particles decay over time into other kinds of particles, pairs of particles can come into being which are said to be entangled with one having an "up" spin direction and the other a "down" spin direction. The members of such entangled pairs must be in the state they are in - and measuring the state of one "alters" the state of the other. The two particles are separated over distance by the way and they can spin the same way or different ways.

How they did it

The starting points were four sets of approximately one million Caesium atoms, with each set separated from the others by 1mm and confined within a magnetic field. The four were cooled to just a few hundred millionths of a degree above absolute zero, using lasers apparently. Caesium is a metal that is in a near-liquid state at room temperature; presumably it would be more solid than a rock when cooled this much.

Each set or ensemble of these atoms has atoms in it with an up or down spin direction with a spin wave concept describing the overall spin characteristics of each set. The Caltech researchers entangled these spin waves among the four sets. So now we have information, in a sense, stored in the four sets and the researchers shone four lasers into the four entangled ensembles to detect this.

The read laser lights were altered because "the coherent arrangement of excitation amplitudes for the atoms in the ensembles, described by spin waves, enhances the matter–light interaction through a phenomenon known as super-radiant emission."

Akihisa Goban, one of the Caltech researchers and co-author of a paper in Nature about their work, said: "The emitted light from each atom in an ensemble constructively interferes with the light from other atoms in the forward direction, allowing us to transfer the spin wave excitations of the ensembles to single photons."

Caltech's press release stated:

"The researchers were therefore able to coherently move the quantum information from the individual sets of multi-partite entangled atoms to four entangled beams of light, forming the bridge between matter and light that is necessary for quantum networks."

Caltech graduate student researcher Kyung Soo Choi, the lead author of the Nature paper, cast more light on the subject, saying: "In the zoology of entangled states, our experiment illustrates how multi-partite entangled spin waves can evolve into various subsets of the entangled systems over time, and sheds light on the intricacy and fragility of quantum entanglement in open quantum systems."

Choi added: "Our work introduces new sets of experimental capabilities to generate, store, and transfer multi-partite entanglement from matter to light in quantum networks."

Unable to stop because of his super-excited state, Choi carried on. "It signifies the ever-increasing degree of exquisite quantum control to study and manipulate entangled states of matter and light."

If your cranial supercomputer is still functioning at this point you can read a little bit more here. ®

3 Big data security analytics techniques

More from The Register

next story
This time it's 'Personal': new Office 365 sub covers just two devices
Redmond also brings Office into Google's back yard
Kingston DataTraveler MicroDuo: Turn your phone into a 72GB beast
USB-usiness in the front, micro-USB party in the back
Dropbox defends fantastically badly timed Condoleezza Rice appointment
'Nothing is going to change with Dr. Rice's appointment,' file sharer promises
BOFH: Oh DO tell us what you think. *CLICK*
$%%&amp Oh dear, we've been cut *CLICK* Well hello *CLICK* You're breaking up...
AMD's 'Seattle' 64-bit ARM server chips now sampling, set to launch in late 2014
But they won't appear in SeaMicro Fabric Compute Systems anytime soon
Amazon reveals its Google-killing 'R3' server instances
A mega-memory instance that never forgets
Cisco reps flog Whiptail's Invicta arrays against EMC and Pure
Storage reseller report reveals who's selling what
prev story

Whitepapers

SANS - Survey on application security programs
In this whitepaper learn about the state of application security programs and practices of 488 surveyed respondents, and discover how mature and effective these programs are.
Combat fraud and increase customer satisfaction
Based on their experience using HP ArcSight Enterprise Security Manager for IT security operations, Finansbank moved to HP ArcSight ESM for fraud management.
The benefits of software based PBX
Why you should break free from your proprietary PBX and how to leverage your existing server hardware.
Top three mobile application threats
Learn about three of the top mobile application security threats facing businesses today and recommendations on how to mitigate the risk.
3 Big data security analytics techniques
Applying these Big Data security analytics techniques can help you make your business safer by detecting attacks early, before significant damage is done.