Feeds

Top 500 supers: China rides GPUs to world domination

The People's Republic of Petaflops

  • alert
  • submit to reddit

Choosing a cloud hosting partner with confidence

In the Hopper

The fifth most-powerful super in the world based on the Linpack tests (at least the ones we know about) is a brand new box called Hopper. Installed at the US DOE's National Energy Research Scientific Computing center, Hopper is a Cray XE6 super using that new Gemini interconnect and twelve-core Opteron 6100 processors - no fancy schmancy GPU co-processors. (Well, at least not yet, anyway.) Hopper has 153,408 cores spinning at 2.1 GHz and delivers 1.05 petaflops of sustained performance with an efficiency of 82 per cent.

If it is not yet obvious, there is a bottleneck in getting parallel supercomputer nodes to talk through their networking stacks running on their x64 processors and out over the PCI-Express 2.0 bus. If Nvidia or AMD want to do something useful, embedding a baby x64 processor inside of a GPU co-processor along with a switchable 10 Gigabit Ethernet or 40 Gb/sec InfiniBand port would make a very interesting baby server node. Throw in cache coherence between the x64 and GPU processors and maybe getting to 50 petaflops won't seem like such a big deal.

The Bull Tera-100 super at the Commissariat a l'Energie Atomique in France, is based on Intel's Xeon 7500 high-end processors and Bull's bullx supercomputer blades and ranks sixth in the world. The machine uses QDR InfiniBand to lash the nodes together, and is rated at 1.05 petaflops. This machine does not have GPUs in it from either AMD or Nvidia, and neither does number eight, the Kraken XT5 super from Cray that is owned by the University of Tennessee and which is operated by DOE's Oak Ridge National Laboratory. Kraken delivers 831.7 teraflops of sustained Linpack performance, unchanged from when it came onto the list a year ago.

Number seven on the list, the Roadrunner Opteron blade system at Los Alamos National Laboratory (another DOE site) does use accelerators, but they are IBM's now defunct Cell co-processors, which are based on IBM's Power cores and which have eight vector math units per chip. While the Roadrunner machine demonstrated the viability of co-processors to push up to the petaflops. But Roadrunner is stalled at 1.04 petaflops, is probably not going to be upgraded, and is therefore uninteresting even if it will do lots of good work for the DOE. (If you consider designing nuclear weapons good work, of course.)

Number nine on the list is the BlueGene/P super, named Jugene, built by IBM for the Forschungszentrum Juelich in Germany, which debuted at number three at 825.5 teraflops on the June 2009 list and hasn't changed since then. Rounding out the top ten on the Top 500 list is the Cielo Cray XE6 at Los Alamos, a new box that is rated at 816.6 teraflops of sustained Linpack performance.

New hybrid storage solutions

Next page: GPU is my co-pilot

Whitepapers

Providing a secure and efficient Helpdesk
A single remote control platform for user support is be key to providing an efficient helpdesk. Retain full control over the way in which screen and keystroke data is transmitted.
WIN a very cool portable ZX Spectrum
Win a one-off portable Spectrum built by legendary hardware hacker Ben Heck
Storage capacity and performance optimization at Mizuno USA
Mizuno USA turn to Tegile storage technology to solve both their SAN and backup issues.
High Performance for All
While HPC is not new, it has traditionally been seen as a specialist area – is it now geared up to meet more mainstream requirements?
Security and trust: The backbone of doing business over the internet
Explores the current state of website security and the contributions Symantec is making to help organizations protect critical data and build trust with customers.