Feeds

High-speed asteroid pile-up prompts X-File

Astronomers probe 'peculiar' object

Protecting against web application threats using SSL

The Hubble Space Telescope has captured the aftermath of just what happens when two asteroids collide at 11,000 mph (17,702 km/h), prompting an explosion "as powerful as the detonation of a small atomic bomb".

The result is a "peculiar" object - dubbed P/2010 A2 - which boasts a comet-like debris trail behind a mysterious X-shaped formation.

Hubble image of P/2010 A2, as seen by Hubble. Pic: NASA

The asteroid belt pile-up happened in early 2009, according to NASA, but it wasn't until January this year that the Lincoln Near-Earth Research (LINEAR) Program Sky Survey spotted the tail.

Hubble's Wide Field Camera 3 observations indicate a surviving 400-foot-wide (122m-wide) object, which was hit by a smaller body, "perhaps 10 to 15 feet wide" (3 to 4m). The latter was vapourised in the blast, and its remains and material thrown off from the former were swept into a tail by solar radiation.

Astronomers are keen to find out just how much dust such high-speed encounters eject into interplanetary space, and while they reckon that "modest-sized asteroids smash into each other about once a year", they're difficult to spot.

But P/2010 A2 doesn't conform to the scientists' predictions. David Jewitt, of the University of California in Los Angeles, said: "We expected the debris field to expand dramatically, like shrapnel flying from a hand grenade. But what happened was quite the opposite. We found that the object is expanding very, very slowly."

The X shape, meanwhile, has the boffins stumped. NASA says: "The crisscrossed filaments at the head of the tail suggest that the colliding asteroids were not perfectly symmetrical. Material ejected from the impact, therefore, did not make a symmetrical pattern, a bit like the ragged splash made by throwing a rock into a lake. Larger particles in the X disperse very slowly and give this structure its longevity."

Jewitt and colleagues plan to turn Hubble's attention back to P/2010 A2 next year, in order to "see how far the dust has been swept back by the sun's radiation and how the mysterious X-shaped structure has evolved".

The P/2010 A2 findings are published in the 14 October edition of Nature. NASA has more here. ®

Reducing the cost and complexity of web vulnerability management

More from The Register

next story
PORTAL TO ELSEWHERE scried in small galaxy far, far away
Supermassive black hole dominates titchy star formation
Bacon-related medical breakthrough wins Ig Nobel prize
Is there ANYTHING cured pork can't do?
Boffins say they've got Lithium batteries the wrong way around
Surprises at the nano-scale mean our ideas about how they charge could be all wrong
Edge Research Lab to tackle chilly LOHAN's final test flight
Our US allies to probe potential Vulture 2 servo freeze
Europe prepares to INVADE comet: Rosetta landing site chosen
No word yet on whether backup site is labelled 'K'
Cracked it - Vulture 2 power podule fires servos for 4 HOURS
Pixhawk avionics juice issue sorted, onwards to Spaceport America
Archaeologists and robots on hunt for more Antikythera pieces
How much of the world's oldest computer can they find?
prev story

Whitepapers

Secure remote control for conventional and virtual desktops
Balancing user privacy and privileged access, in accordance with compliance frameworks and legislation. Evaluating any potential remote control choice.
WIN a very cool portable ZX Spectrum
Win a one-off portable Spectrum built by legendary hardware hacker Ben Heck
Storage capacity and performance optimization at Mizuno USA
Mizuno USA turn to Tegile storage technology to solve both their SAN and backup issues.
High Performance for All
While HPC is not new, it has traditionally been seen as a specialist area – is it now geared up to meet more mainstream requirements?
The next step in data security
With recent increased privacy concerns and computers becoming more powerful, the chance of hackers being able to crack smaller-sized RSA keys increases.