Feeds

IBM 'one atom, one bit' storage breakthrough

Is that a terabyte in your pocket, or...?

Next gen security for virtualised datacentres

If you've been hankering for a multi-terabyte USB thumb drive, you may be in luck: IBM scientists have developed a technique that could — eventually — help increase data-storage densities by orders of magnitude.

The breakthrough, announced Friday, allows researchers to measure how long a bit of information can be retained in an individual atom. It does so by capturing, recording, and visualizing the magnetic properties of that atom in real time.

Using a scanning tunneling microscope (STM) to essentially record a "movie" of an atom's magnetic behavior, that behavior can now be analyzed at frame rates one million times faster than before, according to researchers at IBM's Almaden Research Center in San José, California — down to a nanosecond time frame.

And as Andreas Heinrich, a physicist at the Almaden center pointed out: "To put this in perspective, one nanosecond to one second is the equivalent of one second to 30 years."

"This technique developed by the IBM Research team is a very important new capability for characterizing small structures and understanding what is happening at fast time scales," said Michael Crommie, a physicist at the University of California, Berkeley.

Crommie noted that such knowledge of atomic-level activity could lead to advancements in photovoltaics, and the Almaden researchers added quantum computing to the nascent fields that could benefit from the technique.

Sebastian Loth of IBM Research, a coauthor of the paper announcing the new technique, published in the current issue of Science, is interested in the advances in storage technology made possible by the STM probe: "This breakthrough allows us — for the first time — to understand how long information can be stored in an individual atom," he said.

With this new knowledge in hand, storage-device designers could, according to the researchers, "engineer the magnetic lifetime of the atoms to make them longer (to retain their magnetic state) or shorter (to switch to a new magnetic state) as needed to create future spintronic devices" in which a single atom could hold a single bit.

For a layman's-level explanation of how the technique works, check out IBM's press release. For a deep-geek dive into the details, you can purchase a copy of the Science article, "Measurement of Fast Electron Spin Relaxation Times with Atomic Resolution," here. ®

Gartner critical capabilities for enterprise endpoint backup

More from The Register

next story
The Return of BSOD: Does ANYONE trust Microsoft patches?
Sysadmins, you're either fighting fires or seen as incompetents now
Microsoft: Azure isn't ready for biz-critical apps … yet
Microsoft will move its own IT to the cloud to avoid $200m server bill
Shoot-em-up: Sony Online Entertainment hit by 'large scale DDoS attack'
Games disrupted as firm struggles to control network
Cutting cancer rates: Data, models and a happy ending?
How surgery might be making cancer prognoses worse
Silicon Valley jolted by magnitude 6.1 quake – its biggest in 25 years
Did the earth move for you at VMworld – oh, OK. It just did. A lot
Forrester says it's time to give up on physical storage arrays
The physical/virtual storage tipping point may just have arrived
prev story

Whitepapers

Implementing global e-invoicing with guaranteed legal certainty
Explaining the role local tax compliance plays in successful supply chain management and e-business and how leading global brands are addressing this.
5 things you didn’t know about cloud backup
IT departments are embracing cloud backup, but there’s a lot you need to know before choosing a service provider. Learn all the critical things you need to know.
Why and how to choose the right cloud vendor
The benefits of cloud-based storage in your processes. Eliminate onsite, disk-based backup and archiving in favor of cloud-based data protection.
Top 8 considerations to enable and simplify mobility
In this whitepaper learn how to successfully add mobile capabilities simply and cost effectively.
High Performance for All
While HPC is not new, it has traditionally been seen as a specialist area – is it now geared up to meet more mainstream requirements?