Feeds

IBM 'one atom, one bit' storage breakthrough

Is that a terabyte in your pocket, or...?

Top 5 reasons to deploy VMware with Tegile

If you've been hankering for a multi-terabyte USB thumb drive, you may be in luck: IBM scientists have developed a technique that could — eventually — help increase data-storage densities by orders of magnitude.

The breakthrough, announced Friday, allows researchers to measure how long a bit of information can be retained in an individual atom. It does so by capturing, recording, and visualizing the magnetic properties of that atom in real time.

Using a scanning tunneling microscope (STM) to essentially record a "movie" of an atom's magnetic behavior, that behavior can now be analyzed at frame rates one million times faster than before, according to researchers at IBM's Almaden Research Center in San José, California — down to a nanosecond time frame.

And as Andreas Heinrich, a physicist at the Almaden center pointed out: "To put this in perspective, one nanosecond to one second is the equivalent of one second to 30 years."

"This technique developed by the IBM Research team is a very important new capability for characterizing small structures and understanding what is happening at fast time scales," said Michael Crommie, a physicist at the University of California, Berkeley.

Crommie noted that such knowledge of atomic-level activity could lead to advancements in photovoltaics, and the Almaden researchers added quantum computing to the nascent fields that could benefit from the technique.

Sebastian Loth of IBM Research, a coauthor of the paper announcing the new technique, published in the current issue of Science, is interested in the advances in storage technology made possible by the STM probe: "This breakthrough allows us — for the first time — to understand how long information can be stored in an individual atom," he said.

With this new knowledge in hand, storage-device designers could, according to the researchers, "engineer the magnetic lifetime of the atoms to make them longer (to retain their magnetic state) or shorter (to switch to a new magnetic state) as needed to create future spintronic devices" in which a single atom could hold a single bit.

For a layman's-level explanation of how the technique works, check out IBM's press release. For a deep-geek dive into the details, you can purchase a copy of the Science article, "Measurement of Fast Electron Spin Relaxation Times with Atomic Resolution," here. ®

Beginner's guide to SSL certificates

More from The Register

next story
Ellison: Sparc M7 is Oracle's most important silicon EVER
'Acceleration engines' key to performance, security, Larry says
Oracle SHELLSHOCKER - data titan lists unpatchables
Database kingpin lists 32 products that can't be patched (yet) as GNU fixes second vuln
Lenovo to finish $2.1bn IBM x86 server gobble in October
A lighter snack than expected – but what's a few $100m between friends, eh?
Ello? ello? ello?: Facebook challenger in DDoS KNOCKOUT
Gets back up again after half an hour though
Hey, what's a STORAGE company doing working on Internet-of-Cars?
Boo - it's not a terabyte car, it's just predictive maintenance and that
prev story

Whitepapers

Forging a new future with identity relationship management
Learn about ForgeRock's next generation IRM platform and how it is designed to empower CEOS's and enterprises to engage with consumers.
Storage capacity and performance optimization at Mizuno USA
Mizuno USA turn to Tegile storage technology to solve both their SAN and backup issues.
The next step in data security
With recent increased privacy concerns and computers becoming more powerful, the chance of hackers being able to crack smaller-sized RSA keys increases.
Security for virtualized datacentres
Legacy security solutions are inefficient due to the architectural differences between physical and virtual environments.
A strategic approach to identity relationship management
ForgeRock commissioned Forrester to evaluate companies’ IAM practices and requirements when it comes to customer-facing scenarios versus employee-facing ones.