Feeds

Google Percolator – global search jolt sans MapReduce comedown

The machine that brews the Caffeine

Gartner critical capabilities for enterprise endpoint backup

Google Caffeine — the revamped search infrastructure recently rolled out across Google's worldwide network of data centers — is based on a distributed data-processing system known as Percolator. Designed by Google and, until now, jealously guarded by Google, Percolator is a platform for "incremental processing" — a means of continually updating the company's epic search index without reprocessing the entire thing from scratch.

As Google senior director of engineering Eisar Lipkovitz told The Register earlier this month, the new platform is a speedier alternative to MapReduce, the distributed number-crunching platform that underpinned the company's previous indexing system. Two New York-based Google engineers — Daniel Peng and Frank Dabek — discuss the platform at length in a paper they are scheduled to present at the annual USENIX Symposium on Operating Systems Design and Implementation (OSDI) next month in Vancouver.

"MapReduce and other batch-processing systems cannot process small updates individually as they rely on creating large batches for efficiency," the paper reads. "We have built Percolator, a system for incrementally processing updates to a large data set, and deployed it to create the Google web search index. By replacing a batch-based indexing system with an indexing system based on incremental processing using Percolator, we process the same number of documents per day, while reducing the average age of documents in Google search results by 50%."

Speaking with The Register, Lipkovitz compared the system to classic database programming and the use of "database triggers." Because the index can be updated incrementally, the median document moves through Caffeine over 100 times faster than it moved through the company's old MapReduce setup. "The Percolator-based indexing system (known as Caffeine), crawls the same number of documents, but we feed each document through Percolator as it is crawled. The immediate advantage, and main design goal, of Caffeine is a reduction in latency."

“By replacing a batch-based indexing system with an indexing system based on incremental processing using Percolator, we process the same number of documents per day, while reducing the average age of documents in Google search results by 50%.”

In the past, Google's search index — an index of the entire web — was built with a series of batch operations. The MapReduce platform "maps" tasks across a vast collection of distributed machines, splitting them into tiny sub-tasks, before "reducing" the results into one master calculation. Google's webcrawlers would supply the raw data — the webpages and weblinks — and MapReduce would process this data, determining, among other things, each site's PageRank, that famous measure of how many other sites it links to.

Secure remote control for conventional and virtual desktops

Next page: MapReduce reduced

More from The Register

next story
The Return of BSOD: Does ANYONE trust Microsoft patches?
Sysadmins, you're either fighting fires or seen as incompetents now
Microsoft: Azure isn't ready for biz-critical apps … yet
Microsoft will move its own IT to the cloud to avoid $200m server bill
Oracle reveals 32-core, 10 BEEELLION-transistor SPARC M7
New chip scales to 1024 cores, 8192 threads 64 TB RAM, at speeds over 3.6GHz
US regulators OK sale of IBM's x86 server biz to Lenovo
Now all that remains is for gov't offices to ban the boxes
Object storage bods Exablox: RAID is dead, baby. RAID is dead
Bring your own disks to its object appliances
Nimble's latest mutants GORGE themselves on unlucky forerunners
Crossing Sandy Bridges without stopping for breath
A beheading in EMC's ViPR lair? Software's big cheese to advise CEO
Changes amid rivalry in the storage snake pit
prev story

Whitepapers

Implementing global e-invoicing with guaranteed legal certainty
Explaining the role local tax compliance plays in successful supply chain management and e-business and how leading global brands are addressing this.
Top 10 endpoint backup mistakes
Avoid the ten endpoint backup mistakes to ensure that your critical corporate data is protected and end user productivity is improved.
Top 8 considerations to enable and simplify mobility
In this whitepaper learn how to successfully add mobile capabilities simply and cost effectively.
Rethinking backup and recovery in the modern data center
Combining intelligence, operational analytics, and automation to enable efficient, data-driven IT organizations using the HP ABR approach.
Reg Reader Research: SaaS based Email and Office Productivity Tools
Read this Reg reader report which provides advice and guidance for SMBs towards the use of SaaS based email and Office productivity tools.