Feeds

Weather gets granular with GPUs

Just say NOAA

Choosing a cloud hosting partner with confidence

HPC Blog Everyone complains about the weather, but no one is doing anything about it.

The folks at the National Oceanic and Atmospheric Administration (NOAA) aren't doing anything about the weather. They're too busy trying to figure out what it's going to do tomorrow and next week.

I sat in on a very interesting presentation from NOAA on Tuesday afternoon at the GPU Technology Conference about how they're going to use GPUs to sharpen up their forecasts and dial them in to a much greater resolution. This is quite a computational problem, as it turns out. In 2008, it took 800 cores to drive their model at a 15 to 30 kilometer resolution. To get to a 10 KM resolution, it took a bit more hardware –125,200 more processor cores, to be exact – for a grand total of 126,000 cores.

Their next step is to get to 3.5 KM resolution, which is an entirely different kettle of fish. The only way to get to this level of granularity is to move to GPUs in a big way - which is what they're pursuing right now. They've learned some lessons along the way, the foremost being that the key to efficiently taking advantage of GPUs is to intimately know their code.

For example, when they were running their models with CPUs exclusively, interprocess communications used up about 5 per cent of the cycles. The move to GPUs didn't change the need or the time necessary for these communications, but because of the greater speed of the GPUs, the ratio of communication time to processing became 50% of total processing - making these processes enemy number one.

Memory management is also hugely important. GPUs are incredibly fast on the right code, but not understanding how to best utilize the memory on the GPU card can keep you from getting the most out of them. There are two classes of memory on the cards: the 16k that is closest to each GPU core, and then the much larger (1GB in the NOAA situation) global shared memory on the card.

The difference in speed in accessing this memory is profound - it takes only two cycles to get to the close memory, and 100 cycles to get to the global memory. Accessing memory on the server host would, assumedly, be measured in geologic time. Wise use of the blazingly fast, but tiny, memory attached to each core can make the difference between going faster and going a whole hell of a lot faster.

Likewise, constantly fetching data from the CPU-based host server is also costly from a performance standpoint. One weather model, called WRF (pronounced "Worf," like the Star Trek guy) showed a 20x speed-up in raw performance that shrunk to 7x when taking into account the time needed to copy data from the server over and over again. The NOAA folks have restructured their programs to minimize data copying and have seen performance rise commensurately.

Right now they're seeing performance ranging from 15x to 39x speed-up with GPU + CPU systems vs. exclusively CPU-based hardware. This is with fully optimized CUDA code running on a smallish pilot system, but it has proven the validity of their approach and is a pretty big win. Their push going forward is to scale the model to larger hardware - fueled by GPUs - completing the transition to the 3.5 KM resolution. ®

Remote control for virtualized desktops

More from The Register

next story
Just don't blame Bono! Apple iTunes music sales PLUMMET
Cupertino revenue hit by cheapo downloads, says report
The DRUGSTORES DON'T WORK, CVS makes IT WORSE ... for Apple Pay
Goog Wallet apparently also spurned in NFC lockdown
IBM, backing away from hardware? NEVER!
Don't be so sure, so-surers
Hey - who wants 4.8 TERABYTES almost AS FAST AS MEMORY?
China's Memblaze says they've got it in PCIe. Yow
Microsoft brings the CLOUD that GOES ON FOREVER
Sky's the limit with unrestricted space in the cloud
This time it's SO REAL: Overcoming the open-source orgasm myth with TODO
If the web giants need it to work, hey, maybe it'll work
'ANYTHING BUT STABLE' Netflix suffers BIG Europe-wide outage
Friday night LIVE? Nope. The only thing streaming are tears down my face
Google roolz! Nest buys Revolv, KILLS new sales of home hub
Take my temperature, I'm feeling a little bit dizzy
Storage array giants can use Azure to evacuate their back ends
Site Recovery can help to move snapshots around
prev story

Whitepapers

Cloud and hybrid-cloud data protection for VMware
Learn how quick and easy it is to configure backups and perform restores for VMware environments.
Forging a new future with identity relationship management
Learn about ForgeRock's next generation IRM platform and how it is designed to empower CEOS's and enterprises to engage with consumers.
High Performance for All
While HPC is not new, it has traditionally been seen as a specialist area – is it now geared up to meet more mainstream requirements?
Intelligent flash storage arrays
Tegile Intelligent Storage Arrays with IntelliFlash helps IT boost storage utilization and effciency while delivering unmatched storage savings and performance.
Website security in corporate America
Find out how you rank among other IT managers testing your website's vulnerabilities.