Feeds

Intel Sandy Bridge many-core secret sauce

One ring to rule them all

Securing Web Applications Made Simple and Scalable

IDF During the coming-out party for Intel's Sandy Bridge microarchitecture at Chipzilla's developer shindig in San Francisco this week, two magic words were repeatedly invoked in tech session after tech session: "modular" and "scalable". Key to those Holy Grails of architectural flexibility is the architecture's ring interconnect.

"We have a very modular architecture," said senior principal engineer Opher Kahn at one session. "This ring architecture is laid out in such a way that we can easily add and remove cores as necessary. The graphics can also have different versions."

How many cores was Kahn talking about? At another session he referred to "some future implementation with 10 cores or 16 cores." And although all of the materials presented at the conference referenced a four-core Sandy Bridge implementation, Kahn also referred at one point to a "two core product."

The Sandy Bridge ring interconnect manages how the various and sundry parts of the processor communicate with one another: the compute cores with one shared "cache box" per core, the graphics subsystem, and finally the "system agent" — the chip area that includes such niceties as PCIe, direct media interface (DMI), integrated memory controller (IMC), display engine, and power management.

Intel Sandy Bridge microarchitecture block diagram

Here, the ring interconnect is the loop that looks like a train track

"The cores talk to the ring directly, they don't talk to any other element," said Kahn. "The graphics talks to the ring, the ring talks to the cache box, and the cache box talks to the system agent. And in some cases they can talk to each other, but all communication is done over the ring."

The ring interconnect was needed due to a number of factors, not the least of which being the fact that Sandy Bridge crams so many different functions onto one piece of silicon.

"In the previous generation we really had a multi-chip package, with a separate CPU — a more traditional CPU that looked a little bit like Merom and Conroe family, the Nehalem — with cores and a last-level cache," Kahn said — in Intel's latest parlance, by the way, what previously was often referred to as an L3 cache is now known as a last-level cache, or LLC for short.

Connected to that CPU in the same package was a second chip with integrated graphics, memory control, PCIe, and more. For Sandy Bridge, "We basically dropped all that and integrated everything into one piece of silicon," he said.

The development of the ring interconnect started a relatively clean sheet of paper. "We really started from scratch," said Kahn. "Everything that connects the cores, connects to the system, memory controller — everything was redesigned for Sandy Bridge from scratch."

Not that a ring interconnect is brand new in Sandy Bridge. "The ring architecture as a concept actually started in Nehalem-EX," said Kahn, "which is an eight-core server. They needed that bandwidth for server; we actually figured out that we need similar bandwidth and similar behavior in the client space.

And the bandwidth that the ring interconnect provides is impressive. "Our bandwidth provided by this ring for each element connected to the ring connect gives 96 gigabytes per second ... if you're talking about running at 3GHz," Kahn said. "The multi-bank last-level cache for a four-core product provides upwards of 380 gigabytes per second. This is 4X of what existed in previous generations — even the two-core product is 190 gigbytes per second."

A four-fold increase in bandwidth "is really a necessity for the graphics," he said. "Probably higher than or close to what all four cores need together can be consumed by the graphics.

Application security programs and practises

More from The Register

next story
iPad? More like iFAD: We reveal why Apple fell into IBM's arms
But never fear fanbois, you're still lapping up iPhones, Macs
For Lenovo US, 8-inch Windows tablets are DEAD – long live 8-inch Windows tablets
Reports it's killing off smaller slabs are greatly exaggerated
Microsoft unsheathes cheap Android-killer: Behold, the Lumia 530
Say it with us: I'm King of the Landfill-ill-ill-ill
Cheer up, Nokia fans. It can start making mobes again in 18 months
The real winner of the Nokia sale is *drumroll* ... Nokia
Seventh-gen SPARC silicon will accelerate Oracle databases
Uncle Larry's mutually-optimised stack to become clearer in August
EU dons gloves, pokes Google's deals with Android mobe makers
El Reg cops a squint at investigatory letters
Apple orders huge MOUNTAIN of 80 MILLION 'Air' iPhone 6s
Bigger, harder trouser bulges foretold for fanbois
prev story

Whitepapers

Top three mobile application threats
Prevent sensitive data leakage over insecure channels or stolen mobile devices.
Implementing global e-invoicing with guaranteed legal certainty
Explaining the role local tax compliance plays in successful supply chain management and e-business and how leading global brands are addressing this.
Top 8 considerations to enable and simplify mobility
In this whitepaper learn how to successfully add mobile capabilities simply and cost effectively.
Application security programs and practises
Follow a few strategies and your organization can gain the full benefits of open source and the cloud without compromising the security of your applications.
The Essential Guide to IT Transformation
ServiceNow discusses three IT transformations that can help CIO's automate IT services to transform IT and the enterprise.