Feeds

Intel introduces Sandy Bridge chippery

Swiss Army processor

Internet Security Threat Report 2014

IDF Intel took the wraps off its new Sandy Bridge microarchitecture Monday morning — now officially branded as the 2nd Generation Intel Core Processor — revealing a number of notable improvements over its current Nehalem-based processor line, including what the company claims are greatly improved on-chip integrated graphics.

"Sandy Bridge will revolutionize PCs — again," said Intel president and CEO Paul Otellini during his keynote presentation at the Intel Developer Forum in San Francisco. "On one single chip, we've put in place all the critical capabilities for computing."

Like the Westmere parts promoed last December and introduced at the Consumer Electronics Show in January, Sandy Bridge chips will be built using Intel's 32-nanometer process. In Intel parlance, Sandy Bridge is a "tock" — a new architecture on an existing process, while Westmere was a "tick" — an existing (Nehalem) architecture on a new (32nm) process.

While Westmere had a 45nm GPU inside the same package as its 32nm CPU, Sandy Bridge brings the GPU circuitry onto the same 32nm die, along with the memory controller, a dedicated video transcoder, and the CPU's improved media-handling 256-bit-wide SIMD unit called AVX — advanced vector extensions. As might be guessed, a 256-wide AVX SIMD should be able to process media-centric data at least twice as fast as Intel's previous 128-bit SSE SIMD

Note that Intel isn't the only chip baker to be moving up to AVX — support for at least a hefty chunk of AVX instructions are also planned for inclusion in AMD's upcoming burly Bulldozer, set for release next year.

AMD's long-delayed Fusion line of processors will also share another core (no pun intended) Sandy Bridge feature: an on-die GPU. Sandy Bridge's GPU is a three-part system, the first part being a collection of multiple execution units, with the number of units to vary by processor level — six and twelve had been reported in pre-IDF leaks.

Second is the media-processing unit, which will handle both video decoding and encoding. Dadi Perlmutter, headman of Intel's architecture group, made much of this capability in his Sandy Bridge discussion, speaking of how users want video encoding to take place in seconds, not minutes, and how he claims that Sandy Bridge's video-transcoding capabilities will deliver that level of performance.

The third part of the GPU is 3D processing. Both the GPU and the CPU cores (Monday's demos showed a four-core part) communicate with a shared "last level cache" over a ring bus à la Intel's ill-fated Larrabee discrete-graphics CPU/GPU mash-up, which never saw the light of day as anything other than a development platform.

Sandy Bridge, to no one's surprise, will also support Intel's two-threads-per-core Hyper-Threading technology, as well as its Turbo Boost tech, which allows one or more cores to be boosted when other cores are idle, or even all cores together to get a bit of extra juice when needed — even when doing so would briefly exceed that processor's thermal envelope.

One nifty feature of Sandy Bridge's turbo capability is that the CPU and GPU can be "turboed" separately. Need extra GPU power for gaming? Turbo the GPU. Doing some sophisticated number-crunching? Turn down the GPU and juice the CPU. All of this turbo management happens in a split second but further details will have to wait for a tech track less marketing-focused than a keynote.

Otellini and Perlmutter's morning performance was merely Sandy Bridge's unveiling. Throughout IDF's first day, the microprocessor track will be all-Sandy, all the time, with an assortment of sessions peeling back successive layers of the new architecture. Expect more Sandy Bridge details from your Reg reporter after he takes a deeper dive into those sessions to shake off the "gee-whiz" flash 'n' dazzle of the opening keynote. ®

Bootnote

Motherboard manufacturers will be pleased to know that Sandy Bridge, as we reported in April, will require yet another new socket, the LGA-1155 — which follows the LGA-1366 for the original Core i7 and the LGA-1156 for Lynnfield/Clarkdale. Do Otellini and Perlmutter own stock in MSI or Asus? (Just kidding, just kidding...)

Intelligent flash storage arrays

Whitepapers

Choosing cloud Backup services
Demystify how you can address your data protection needs in your small- to medium-sized business and select the best online backup service to meet your needs.
Forging a new future with identity relationship management
Learn about ForgeRock's next generation IRM platform and how it is designed to empower CEOS's and enterprises to engage with consumers.
Security for virtualized datacentres
Legacy security solutions are inefficient due to the architectural differences between physical and virtual environments.
Reg Reader Research: SaaS based Email and Office Productivity Tools
Read this Reg reader report which provides advice and guidance for SMBs towards the use of SaaS based email and Office productivity tools.
Storage capacity and performance optimization at Mizuno USA
Mizuno USA turn to Tegile storage technology to solve both their SAN and backup issues.