Feeds

New 'iPhoD' can 'adjust the speed of light by turning a knob'

Magic quantum opti-chip can be made in normal fab, too

Security for virtualized datacentres

Optical stuff is great, as everyone knows: optical links mean huge bandwidth right now, and computers running on photons rather than electrons might be truly amazing things - tremendously powerful, very economical of energy, and potentially able to exploit quantum effects to achieve all manner of mindbending feats.

But unfortunately, there is as yet no way to handle photons other than in a fibre. To perform operations with them they generally have to be converted into old school electrical impulses - and that makes Professor Holger Schmidt and his crew mad.

One of the things one needs to be able to do in handling photons on chips is to slow the little fellows down or stop them altogether. Schmidt and his fellow researchers say they have done this, and what's more done it using ordinary kit rather than an exotic lab rig.

"We can change the speed of light - just by turning the power control knob," boasts the prof, with pardonable smugness.

"Slow light and other quantum coherence effects have been known for quite awhile, but in order to use them in practical applications we have to be able to implement them on a platform that can be mass-produced and will work at room temperature or higher - that's what our chips accomplish... The simplest example of how slow light can be used is to provide a data buffer or tunable signal delay in an optical network, but we are looking beyond that."

The "integrated photonic chip" produced by Schmidt and his collaborators apparently works using "quantum interference effects in a rubidium vapor inside a hollow-core optical waveguide", built into a silicon chip using ordinary manufacturing techniques.

"Normally, the rubidium vapor absorbs the light from the signal laser, so nothing gets through. Then you turn on the control laser and boom, the material becomes transparent and the signal pulse not only makes it through, but it also moves significantly more slowly," says the prof.

"We can potentially use this to create all-optical switches, single-photon detectors, quantum memory devices, and other exciting possibilities."

Schmidt and his colleagues were funded by the US National Science Foundation. They also received money from famous beaten-track-averse battleboffinry bureau DARPA, whose name for the lightspeed-wrangling quantum rubidium optichipware is "iPhoD" (integrated Photonic Delay).

Schmidt and his team's new paper Slow light on a chip via atomic quantum state control can be read in full for free here courtesy of Nature Photonics. ®

Protecting users from Firesheep and other Sidejacking attacks with SSL

More from The Register

next story
Oi, Tim Cook. Apple Watch. I DARE you to tell me, IN PERSON, that it's secure
State attorney demands Apple CEO bows the knee to him
Phones 4u website DIES as wounded mobe retailer struggles to stay above water
Founder blames 'ruthless network partners' for implosion
Monitors monitor's monitoring finds touch screens have 0.4% market share
Not four. Point four. Count yer booty again, Microsoft
Getting to the BOTTOM of the great office seating debate
Belay that toil, me hearty, and park your scurvy backside
Hey, Mac fanbois. HGST wants you drooling over its HUGE desktop RACK
What vast digital media repository could possibly need 64 TERABYTES?
In a spin: Samsung accuses LG exec of washing machine SABOTAGE
Rival electronic giant tries to iron out allegations
Lumia rebrand begins: Nokia's new UK web home is Microsoft.com
Yarr, them Nokia logos walking the plank and into the drink
prev story

Whitepapers

Secure remote control for conventional and virtual desktops
Balancing user privacy and privileged access, in accordance with compliance frameworks and legislation. Evaluating any potential remote control choice.
WIN a very cool portable ZX Spectrum
Win a one-off portable Spectrum built by legendary hardware hacker Ben Heck
Storage capacity and performance optimization at Mizuno USA
Mizuno USA turn to Tegile storage technology to solve both their SAN and backup issues.
High Performance for All
While HPC is not new, it has traditionally been seen as a specialist area – is it now geared up to meet more mainstream requirements?
The next step in data security
With recent increased privacy concerns and computers becoming more powerful, the chance of hackers being able to crack smaller-sized RSA keys increases.