Feeds

New 'iPhoD' can 'adjust the speed of light by turning a knob'

Magic quantum opti-chip can be made in normal fab, too

Gartner critical capabilities for enterprise endpoint backup

Optical stuff is great, as everyone knows: optical links mean huge bandwidth right now, and computers running on photons rather than electrons might be truly amazing things - tremendously powerful, very economical of energy, and potentially able to exploit quantum effects to achieve all manner of mindbending feats.

But unfortunately, there is as yet no way to handle photons other than in a fibre. To perform operations with them they generally have to be converted into old school electrical impulses - and that makes Professor Holger Schmidt and his crew mad.

One of the things one needs to be able to do in handling photons on chips is to slow the little fellows down or stop them altogether. Schmidt and his fellow researchers say they have done this, and what's more done it using ordinary kit rather than an exotic lab rig.

"We can change the speed of light - just by turning the power control knob," boasts the prof, with pardonable smugness.

"Slow light and other quantum coherence effects have been known for quite awhile, but in order to use them in practical applications we have to be able to implement them on a platform that can be mass-produced and will work at room temperature or higher - that's what our chips accomplish... The simplest example of how slow light can be used is to provide a data buffer or tunable signal delay in an optical network, but we are looking beyond that."

The "integrated photonic chip" produced by Schmidt and his collaborators apparently works using "quantum interference effects in a rubidium vapor inside a hollow-core optical waveguide", built into a silicon chip using ordinary manufacturing techniques.

"Normally, the rubidium vapor absorbs the light from the signal laser, so nothing gets through. Then you turn on the control laser and boom, the material becomes transparent and the signal pulse not only makes it through, but it also moves significantly more slowly," says the prof.

"We can potentially use this to create all-optical switches, single-photon detectors, quantum memory devices, and other exciting possibilities."

Schmidt and his colleagues were funded by the US National Science Foundation. They also received money from famous beaten-track-averse battleboffinry bureau DARPA, whose name for the lightspeed-wrangling quantum rubidium optichipware is "iPhoD" (integrated Photonic Delay).

Schmidt and his team's new paper Slow light on a chip via atomic quantum state control can be read in full for free here courtesy of Nature Photonics. ®

Next gen security for virtualised datacentres

More from The Register

next story
Reg man looks through a Glass, darkly: Google's toy ploy or killer tech specs?
Tip: Put the shades on and you'll look less of a spanner
So, Apple won't sell cheap kit? Prepare the iOS garden wall WRECKING BALL
It can throw the low cost race if it looks to the cloud
Apple promises to lift Curse of the Drained iPhone 5 Battery
Have you tried turning it off and...? Never mind, here's a replacement
Now that's FIRE WIRE: HP recalls 6 MILLION burn-risk laptop cables
Right in the middle of Burning Mains Man week
One step closer to ROBOT BUTLERS: Dyson flashes vid of VACUUM SUCKER bot
Latest cleaner available for world+dog in September
Apple's iWatch? They cannae do it ... they don't have the POWER
Analyst predicts fanbois will have to wait until next year
HUGE iPAD? Maybe. HUGE ADVERTS? That's for SURE
Noo! Hand not big enough! Don't look at meee!
Samsung Gear S: Quick, LAUNCH IT – before Apple straps on iWatch
Full specs for wrist-mounted device here ... but who'll buy it?
AMD unveils 'single purpose' graphics card for PC gamers and NO ONE else
Chip maker claims the Radeon R9 285 is 'best in its class'
prev story

Whitepapers

Best practices for enterprise data
Discussing how technology providers have innovated in order to solve new challenges, creating a new framework for enterprise data.
Implementing global e-invoicing with guaranteed legal certainty
Explaining the role local tax compliance plays in successful supply chain management and e-business and how leading global brands are addressing this.
Advanced data protection for your virtualized environments
Find a natural fit for optimizing protection for the often resource-constrained data protection process found in virtual environments.
How modern custom applications can spur business growth
Learn how to create, deploy and manage custom applications without consuming or expanding the need for scarce, expensive IT resources.
High Performance for All
While HPC is not new, it has traditionally been seen as a specialist area – is it now geared up to meet more mainstream requirements?