Feeds

Attack reads smudges to retrieve Android password patterns

Oily residue 'surprisingly persistent'

5 things you didn’t know about cloud backup

Smudges left on Android touch screens leave tell-tale signs that can often be used to recover password pattens used to lock the phones, according to research presented earlier this week.

The smudge attacks work by photographing Android handsets from a variety of angles using standard cameras and lights. The oily residues from fingers sliding across the touch-screen surface are then analyzed using standard computers running photo-editing software.

“We believe smudge attacks are a threat for three reasons,” the researchers wrote in a paper presented at the Fourth Usenix Workshop on Offensive Technologies, which took place on Monday in Washington DC.

“First, smudges are surprisingly persistent in time. Second, it is surprisingly difficult to incidentally obscure or delete smudges through wiping or pocketing the device. Third and finally, collecting and analyzing oily residue smudges can be done with readily-available equipment such as a camera and a computer.”

In one experiment that simulated an attack under ideal circumstances – in which touch screens weren't wiped – the researchers were able to recover the entire password pattern 68 per cent of the time if the phone first had been held to the user's face. Partial patterns were recovered 96 per cent of the time. Facial contact ensured there was enough skin oil to cause broad smudging, the researchers said.

A separate experiment, in which the touch screen was put in a user's pocket and allowed to move around slightly, was intended to simulate more realistic usage scenarios.

“Surprisingly, in all cases, the smudge was classified as perfectly retrievable,” the researchers wrote. “Simple clothing contact does not play a large role in removing smudges. However, on closer inspection, information was being lost. The directionality of the smudge often could no longer be determine [sic].”

Although the techniques could be applied to other types of smartphones, it was applied to two models of Android phones, which allow a user to trace a pattern on an on-screen 3x3 grid before the devices can be used. With 389,112 possible patterns, cracking the patterns would on average take many more attempts than the 20 unsuccessful tries permitted by the smartphone operating system. (After that, a user must enter credentials for a valid Google identity to access the phone.)

The experiments were carried out on two separate Android models, the HTC G1 and the HTC Nexus1. The researchers were Adam J. Aviv, Katherine Gibson, Evan Mossop, Matt Blaze and Jonathan M. Smith, and were all from the Computer and Information Science Department at the University of Pennsylvania. A PDF of their paper is here (warning: PDF). ®

Next gen security for virtualised datacentres

More from The Register

next story
Snowden on NSA's MonsterMind TERROR: It may trigger cyberwar
Plus: Syria's internet going down? That was a US cock-up
Who needs hackers? 'Password1' opens a third of all biz doors
GPU-powered pen test yields more bad news about defences and passwords
e-Borders fiasco: Brits stung for £224m after US IT giant sues UK govt
Defeat to Raytheon branded 'catastrophic result'
Hear ye, young cyber warriors of the realm: GCHQ wants you
Get involved, get a job and then never discuss work ever again
Chinese hackers spied on investigators of Flight MH370 - report
Classified data on flight's disappearance pinched
Microsoft cries UNINSTALL in the wake of Blue Screens of Death™
Cache crash causes contained choloric calamity
prev story

Whitepapers

Implementing global e-invoicing with guaranteed legal certainty
Explaining the role local tax compliance plays in successful supply chain management and e-business and how leading global brands are addressing this.
Top 10 endpoint backup mistakes
Avoid the ten endpoint backup mistakes to ensure that your critical corporate data is protected and end user productivity is improved.
Top 8 considerations to enable and simplify mobility
In this whitepaper learn how to successfully add mobile capabilities simply and cost effectively.
Rethinking backup and recovery in the modern data center
Combining intelligence, operational analytics, and automation to enable efficient, data-driven IT organizations using the HP ABR approach.
Reg Reader Research: SaaS based Email and Office Productivity Tools
Read this Reg reader report which provides advice and guidance for SMBs towards the use of SaaS based email and Office productivity tools.