EU boffins aim to reinvent the hard disk

1Tbit/in2 nanosphere platters

High performance access to file storage

EU-backed university researchers are aiming to reinvent the hard disk with a 1Tbit/in2 areal density platter based on nanospheres.

The project is called TERAMAGSTOR (TERabit MAGnetic STORage technologies) and is based on work by Professor Dr Manfred Albrecht of the Physics Department in Chemnitz University of Technology in Germany. He coordinated a team of researchers in Germany, Switzerland, and Sheffield in the UK. The project is a follow-on to MAFIN (MAgnetic FIlms on Nanospheres), a prior proof-of-concept project which explored the nanosphere-based technology.

The MAFIN and TERAMAGSTOR projects are based on the idea of patterned bits, but not using the current notion of having an insulating ring arround every bit and preventing its magnetic charge being affected by the surrounding bits. The idea is to base each bit on a defined nanoscale structure, a nanosphere, and this is used to hold the bit's magnetic charge and keep it stable.

TERAMAGSTOR nanospheres

TERAMAGSTOR images: (A) Base nanospheres which are then given a magnetic cap (in red). (B) Binary values of read caps, and (C) the curvature of the nanocaps.

Each nanosphere is smaller than the 60-80 grain-sized magnetic cells used in today's hard disk drive ferro-magnetic layers, where a grain is about seven nanometers across. These grains are distributed irregularly across the recording medium. Albrecht says making them smaller means they are susceptible to thermal instability, with their charge altering as the temperature of the disk platter rises and falls. The MAFIN method is to use commercially-available silica nanospheres that are 25 nanometers in diameter.

They are blended into an alcohol-based solution which is put onto the drive platter's silica substrate. The alcohol evaporates and the nanospheres orient themselves into a regularly-distributed pattern, settling into tiny pits in the silica substrate, made previously with X-ray lithography. Albrecht believes this can be done in a large scale manufacturing process, saying: “I believe that self-assembly-based approaches have the largest potential because they are not expensive. They are very low cost."

A magnetic film, using an iron-platinum alloy with high magnetic anisotropy, is then deposited on the nanospheres using magnetron sputter deposition. The high temperatures involved in this will prevent glass substrates being used and ceramic ones may be needed instead. The curved nanosphere surface makes the cap curved as well. It forms a single magnetic domain, isolated from its neighbours, and won't exchange magnetic charges with them. The silica in the nanospheres is non-magnetic and so helps in the insulation between the magnetic caps. The direction of the magnetism in the caps provides binary ones and zeroes, and the cap may be tilted to optimise writing data.

The MAFIN project used "state-of-the-art magneto-resistive recording heads provided by Hitachi (HGST)" in its work. However the project team experimented with magnetising and reading the magnetised nanospheres using a probe tipped with a fine magnet.

The 25nm spacing between the nanospheres provides a 1Tbit/in2 areal density and Albrecht thinks this could be increased sixfold.

Chemists, physicists, engineers and materials scientists from nine European institutes began work on TERAMAGSTOR in 2008. It is headed by Demokritos, the National Centre for Scientific Research in Greece, and is a three-year project which will finish in April 2011.

The EU is interested in supporting the MAFIN and TERAMAGSTORE work because it has the potential to strengthen European's "position in many competitive and strategic fields, in particular, in data storage".

Albrecht says: "In Europe we don't have a real industry that produces hard drives. It's all in Asia and the USA. But we have manufacturers of deposition tools and expertise in sputter technology." ®

High performance access to file storage

More from The Register

next story
Seagate brings out 6TB HDD, did not need NO STEENKIN' SHINGLES
Or helium filling either, according to reports
European Court of Justice rips up Data Retention Directive
Rules 'interfering' measure to be 'invalid'
Dropbox defends fantastically badly timed Condoleezza Rice appointment
'Nothing is going to change with Dr. Rice's appointment,' file sharer promises
Cisco reps flog Whiptail's Invicta arrays against EMC and Pure
Storage reseller report reveals who's selling what
Just what could be inside Dropbox's new 'Home For Life'?
Biz apps, messaging, photos, email, more storage – sorry, did you think there would be cake?
IT bods: How long does it take YOU to train up on new tech?
I'll leave my arrays to do the hard work, if you don't mind
Amazon reveals its Google-killing 'R3' server instances
A mega-memory instance that never forgets
USA opposes 'Schengen cloud' Eurocentric routing plan
All routes should transit America, apparently
prev story


Mainstay ROI - Does application security pay?
In this whitepaper learn how you and your enterprise might benefit from better software security.
Five 3D headsets to be won!
We were so impressed by the Durovis Dive headset we’ve asked the company to give some away to Reg readers.
3 Big data security analytics techniques
Applying these Big Data security analytics techniques can help you make your business safer by detecting attacks early, before significant damage is done.
The benefits of software based PBX
Why you should break free from your proprietary PBX and how to leverage your existing server hardware.
Mobile application security study
Download this report to see the alarming realities regarding the sheer number of applications vulnerable to attack, as well as the most common and easily addressable vulnerability errors.