Feeds

EU boffins aim to reinvent the hard disk

1Tbit/in2 nanosphere platters

Intelligent flash storage arrays

EU-backed university researchers are aiming to reinvent the hard disk with a 1Tbit/in2 areal density platter based on nanospheres.

The project is called TERAMAGSTOR (TERabit MAGnetic STORage technologies) and is based on work by Professor Dr Manfred Albrecht of the Physics Department in Chemnitz University of Technology in Germany. He coordinated a team of researchers in Germany, Switzerland, and Sheffield in the UK. The project is a follow-on to MAFIN (MAgnetic FIlms on Nanospheres), a prior proof-of-concept project which explored the nanosphere-based technology.

The MAFIN and TERAMAGSTOR projects are based on the idea of patterned bits, but not using the current notion of having an insulating ring arround every bit and preventing its magnetic charge being affected by the surrounding bits. The idea is to base each bit on a defined nanoscale structure, a nanosphere, and this is used to hold the bit's magnetic charge and keep it stable.

TERAMAGSTOR nanospheres

TERAMAGSTOR images: (A) Base nanospheres which are then given a magnetic cap (in red). (B) Binary values of read caps, and (C) the curvature of the nanocaps.

Each nanosphere is smaller than the 60-80 grain-sized magnetic cells used in today's hard disk drive ferro-magnetic layers, where a grain is about seven nanometers across. These grains are distributed irregularly across the recording medium. Albrecht says making them smaller means they are susceptible to thermal instability, with their charge altering as the temperature of the disk platter rises and falls. The MAFIN method is to use commercially-available silica nanospheres that are 25 nanometers in diameter.

They are blended into an alcohol-based solution which is put onto the drive platter's silica substrate. The alcohol evaporates and the nanospheres orient themselves into a regularly-distributed pattern, settling into tiny pits in the silica substrate, made previously with X-ray lithography. Albrecht believes this can be done in a large scale manufacturing process, saying: “I believe that self-assembly-based approaches have the largest potential because they are not expensive. They are very low cost."

A magnetic film, using an iron-platinum alloy with high magnetic anisotropy, is then deposited on the nanospheres using magnetron sputter deposition. The high temperatures involved in this will prevent glass substrates being used and ceramic ones may be needed instead. The curved nanosphere surface makes the cap curved as well. It forms a single magnetic domain, isolated from its neighbours, and won't exchange magnetic charges with them. The silica in the nanospheres is non-magnetic and so helps in the insulation between the magnetic caps. The direction of the magnetism in the caps provides binary ones and zeroes, and the cap may be tilted to optimise writing data.

The MAFIN project used "state-of-the-art magneto-resistive recording heads provided by Hitachi (HGST)" in its work. However the project team experimented with magnetising and reading the magnetised nanospheres using a probe tipped with a fine magnet.

The 25nm spacing between the nanospheres provides a 1Tbit/in2 areal density and Albrecht thinks this could be increased sixfold.

Chemists, physicists, engineers and materials scientists from nine European institutes began work on TERAMAGSTOR in 2008. It is headed by Demokritos, the National Centre for Scientific Research in Greece, and is a three-year project which will finish in April 2011.

The EU is interested in supporting the MAFIN and TERAMAGSTORE work because it has the potential to strengthen European's "position in many competitive and strategic fields, in particular, in data storage".

Albrecht says: "In Europe we don't have a real industry that produces hard drives. It's all in Asia and the USA. But we have manufacturers of deposition tools and expertise in sputter technology." ®

Choosing a cloud hosting partner with confidence

More from The Register

next story
The cloud that goes puff: Seagate Central home NAS woes
4TB of home storage is great, until you wake up to a dead device
Azure TITSUP caused by INFINITE LOOP
Fat fingered geo-block kept Aussies in the dark
You think the CLOUD's insecure? It's BETTER than UK.GOV's DATA CENTRES
We don't even know where some of them ARE – Maude
Intel offers ingenious piece of 10TB 3D NAND chippery
The race for next generation flash capacity now on
Want to STUFF Facebook with blatant ADVERTISING? Fine! But you must PAY
Pony up or push off, Zuck tells social marketeers
Oi, Europe! Tell US feds to GTFO of our servers, say Microsoft and pals
By writing a really angry letter about how it's harming our cloud business, ta
SAVE ME, NASA system builder, from my DEAD WORKSTATION
Anal-retentive hardware nerd in paws-on workstation crisis
prev story

Whitepapers

Why and how to choose the right cloud vendor
The benefits of cloud-based storage in your processes. Eliminate onsite, disk-based backup and archiving in favor of cloud-based data protection.
A strategic approach to identity relationship management
ForgeRock commissioned Forrester to evaluate companies’ IAM practices and requirements when it comes to customer-facing scenarios versus employee-facing ones.
High Performance for All
While HPC is not new, it has traditionally been seen as a specialist area – is it now geared up to meet more mainstream requirements?
Protecting against web application threats using SSL
SSL encryption can protect server‐to‐server communications, client devices, cloud resources, and other endpoints in order to help prevent the risk of data loss and losing customer trust.
Top 5 reasons to deploy VMware with Tegile
Data demand and the rise of virtualization is challenging IT teams to deliver storage performance, scalability and capacity that can keep up, while maximizing efficiency.