Feeds

God particles breeding like bosons

Family of Higgs actually five, US research suggests

Application security programs and practises

US researchers have suggested that the elusive God particle - the Higgs boson - may actually be no less than a quintet of divine, and as yet elusive, components of the universe.

The Standard Model. Source: AAASThe theoretical Higgs boson is required to give mass to the 16 other particles described by the Standard Model (see graphic), the "internally consistent" theory describing the electromagnetic, strong nuclear and weak nuclear interaction between particles.

New findings from the DZero experiment at Fermilab's Tevatron particle accelerator, however, have led scientists to propose five such particles.

DZero is looking into just why the universe has more matter than antimatter - the so-called "CP violation" of the principle of "CP symmetry", which states that the sum of two symmetries - charge conjugation (C), which transforms a particle into its antiparticle, and parity (P) - should result in an equal amount of matter and antimatter.

Fermilab summarises: "When matter and anti-matter particles collide in high-energy collisions, they turn into energy and produce new particles and antiparticles.

"Similar processes occurring at the beginning of the universe should have left us with a universe with equal amounts of matter and anti-matter. But the world around is made of matter only and antiparticles can only be produced at colliders, in nuclear reactions or cosmic rays."

CP violation, which could go some way to explaining the disappearing antimatter mystery, was first demonstrated back in 1964 by James Cronin and Val Fitch in the decay of neutral kaons ("strange" particles containing strange quarks). DZero has focused on demonstrating the result of high-speed collisions of protons and anti-protons, yielding pairs of muon and antimuon particles from the decay of B mesons.

The result is a one per cent difference in the production of muons and antimuons, which represents a much greater matter/anti-matter ratio than previously seen.

This disparity is "beyond what could be explained by the Standard Model", the BBC explains, so enter stage left multiple Higgs bosons.

Fermilab's Bogdan Dobrescu, Patrick J Fox and Adam Martin say the findings indicate "five Higgs bosons with similar masses but different electric charges".

The BBC elaborates that according to this "two-Higgs doublet model", three bosons would have a neutral charge and "one each would have a negative and positive electric charge".

The name of this theoretical concept comes from the fact that while under the Standard Model the Higgs boson is seen as one particle, it actually comes in a "package of four". Martin explained to the BBC: "In the Standard Model, you only see one of them because the other three are absorbed into [other parts of the scheme] such as the W and the Z bosons. There's only one left.

"So if you want to add another Higgs doublet - you actually have to add four more particles."

If that's not enough particles for you, the Fermilab team's suggestion also fits into the "supersymmetry" theory, which is "an extension to the Standard Model, in which each particle in the scheme has a more massive 'shadow' partner particle".

Just how many Higgs bosons there actually are, and whether the universe is really full of supersymmetrical shadowy partners could be revealed by in due course by the Large Hadron Collider.

The Fermilab press release is here, and its "Evidence for an anomalous like-sign dimuon charge asymmetry" is here. ®

Build a business case: developing custom apps

More from The Register

next story
Asteroid's DINO KILLING SPREE just bad luck – boffins
Sauricide WASN'T inevitable, reckon scientists
BEST BATTERY EVER: All lithium, all the time, plus a dash of carbon nano-stuff
We have found the Holy Grail (of batteries) - boffins
The Sun took a day off last week and made NO sunspots
Someone needs to get that lazy star cooking again before things get cold around here
Boffins discuss AI space program at hush-hush IARPA confab
IBM, MIT, plenty of others invited to fill Uncle Sam's spy toolchest, but where's Google?
Famous 'Dish' radio telescope to be emptied in budget crisis: CSIRO
Radio astronomy suffering to protect Square Kilometre Array
Bad back? Show some spine and stop popping paracetamol
Study finds common pain-killer doesn't reduce pain or shorten recovery
Forty-five years ago: FOOTPRINTS FOUND ON MOON
NASA won't be back any time soon, sadly
prev story

Whitepapers

Implementing global e-invoicing with guaranteed legal certainty
Explaining the role local tax compliance plays in successful supply chain management and e-business and how leading global brands are addressing this.
Consolidation: The Foundation for IT Business Transformation
In this whitepaper learn how effective consolidation of IT and business resources can enable multiple, meaningful business benefits.
Application security programs and practises
Follow a few strategies and your organization can gain the full benefits of open source and the cloud without compromising the security of your applications.
How modern custom applications can spur business growth
Learn how to create, deploy and manage custom applications without consuming or expanding the need for scarce, expensive IT resources.
Securing Web Applications Made Simple and Scalable
Learn how automated security testing can provide a simple and scalable way to protect your web applications.