Feeds

Intel puts x64 in a parallel universe

Taking the MIC out of Larrabee

  • alert
  • submit to reddit

HP ProLiant Gen8: Integrated lifecycle automation

We've all been wondering exactly what Intel would do with various multicore x64 processors that had been designed as co-processors to accelerate graphics and other applications with lots of number-crunching. The answer, as Intel explained at the International Super Computing conference in Hamburg, Germany this week, is simple: Replace lots of standard Xeon processors commonly used in massively parallel supercomputers with many-cored systems on a chip and drop the whole idea of doing discrete graphics cards to compete against Nvidia and Advanced Micro Devices.

At last fall's SC09 supercomputer trade show, Intel's chief technology officer, Justin Rattner, showed off an experimental graphics co-processor code-named "Larrabee," which was able to hit one teraflops running the SGEMM single precision, dense matrix multiply benchmark test when Intel turned on all the cores and then overclocked it for a short spike. But don't get too excited.

Only a few weeks later, Intel condemned Larrabee to the purgatory of development status because it was late coming to market. And last week, knowing that everyone would be asking questions about Larrabee's kickers at the ISC event in Hamburg, Intel's PR machine let it be known that it was bowing out of the discrete graphics processor market, but hinted that the substantial work it had done would be repurposed to make co-processors for HPC accelerating workloads running on x64 processors.

Kirk Skaugen, general manager of Intel's Data Center Group, had to work over the Memorial Day holiday, announcing something Intel is calling the Many Integrated Core architecture, or MIC for short, which Intel is billing as the "industry's first general purpose many core architecture." And rather than having MIC chips be the sole processors in a system, what Intel is going to do is plunk these chips into HPC systems as co-processors, just like Nvidia is doing with Tesla GPUs and Advanced Micro Devices is doing with Stream GPUs.

Here's what the MIC block diagram looks like, and if you remember what the vague statements were made about Larrabee, this sure looks like the same product:

Intel's MIC Architecture for HPC

The Many Integrated Core architecture block diagram

Like Larrabee, the MIC chips that Intel plans to bring to market will marry an x64 core and vector processors to some cache and then plunk down lots and lots of these units on a chip with a fast interconnect that creates keeps the caches for each chip coherent (so they can share data quickly and function more or less like a baby parallel supercomputer). The Larrabee design used a superscalar x64 core (without the out-of-order execution of Xeons, so akin to the Atom chip in some respects) and a 512-bit vector math unit that could do 16 floating point operations per clock doing single precision math. Larrabee also had a very wide ring bus for linking all of the cores and the caches together. As you can see from the MIC block diagram, the same elements are in the MIC architecture.

Skaugen said in his keynote at ISC that the MIC chip family would be known as Knights, and he held up what is presumably the same co-processor that Intel showed off at SC09 last fall, which he identified as the Knights Ferry co-processor:

Intel's Knights Ferry HPC Co-processor

The Intel Knights Ferry HPC co-processor.

This card, which looks exactly like a PCI-Express graphics card, is intended to be used as a software development platform. It has 32 cores, Skaugen divulged, running at 1.2 GHz, and it puts four execution threads on each core for a total of 128 threads. The chip has 8MB of shared coherent cache — that could be a mix of L1 and L2 cache; Skaugen didn't say — and the package comes with 1GB or 2GB of GDDR5 graphics memory for the cores to use as they crunch their numbers.

Yes, it is a graphics card. But it is just a graphics card that no one is ever going to write a graphics driver for — unless some smart asses in the open source community do. Which, by the way, will be possible when the commercial variants of the MIC chips become available. Intel could not stop this, even though it is not promoting MIC chips for use as discrete graphics chips.

Reducing security risks from open source software

More from The Register

next story
Sysadmin Day 2014: Quick, there's still time to get the beers in
He walked over the broken glass, killed the thugs... and er... reconnected the cables*
SHOCK and AWS: The fall of Amazon's deflationary cloud
Just as Jeff Bezos did to books and CDs, Amazon's rivals are now doing to it
Amazon Reveals One Weird Trick: A Loss On Almost $20bn In Sales
Investors really hate it: Share price plunge as growth SLOWS in key AWS division
US judge: YES, cops or feds so can slurp an ENTIRE Gmail account
Crooks don't have folders labelled 'drug records', opines NY beak
Auntie remains MYSTIFIED by that weekend BBC iPlayer and website outage
Still doing 'forensics' on the caching layer – Beeb digi wonk
BlackBerry: Toss the server, mate... BES is in the CLOUD now
BlackBerry Enterprise Services takes aim at SMEs - but there's a catch
The triumph of VVOL: Everyone's jumping into bed with VMware
'Bandwagon'? Yes, we're on it and so what, say big dogs
Carbon tax repeal won't see data centre operators cut prices
Rackspace says electricity isn't a major cost, Equinix promises 'no levy'
prev story

Whitepapers

Designing a Defense for Mobile Applications
Learn about the various considerations for defending mobile applications - from the application architecture itself to the myriad testing technologies.
Implementing global e-invoicing with guaranteed legal certainty
Explaining the role local tax compliance plays in successful supply chain management and e-business and how leading global brands are addressing this.
Top 8 considerations to enable and simplify mobility
In this whitepaper learn how to successfully add mobile capabilities simply and cost effectively.
Seven Steps to Software Security
Seven practical steps you can begin to take today to secure your applications and prevent the damages a successful cyber-attack can cause.
Boost IT visibility and business value
How building a great service catalog relieves pressure points and demonstrates the value of IT service management.