Feeds

Robothopter in biomimetic butterfly boffinry breakthrough

Scientific flap over flapless flapper

Build a business case: developing custom apps

Vid Japanese aerobiomimetics boffins have developed a tiny ornithopter modelled on a swallowtail butterfly.

Here's the obligatory Youtube Flash vid; apologies to those of you reading this on your iPads.

According to Hiroto Tanaka and Isao Shimoyama, the team behind the diminutive flying flapper-bot, the fact that it flies is highly significant. The machine, like the butterfly it is modelled on, beats its wings in simple flapping motions without any fancy control inputs - rather as though it were an aeroplane without elevators, ailerons or flaps.

The two boffins write:

Unlike other flying insects, the wing motion of swallowtail butterflies is basically limited to flapping because their fore wings partly overlap their hind wings, structurally restricting the feathering needed for active control of aerodynamic force. Hence, it can be hypothesized that the flight of swallowtail butterflies is realized with simple flapping, requiring little feedback control of the feathering angle. To verify this hypothesis, we fabricated an artificial butterfly mimicking the wing motion and wing shape of a swallowtail butterfly and analyzed its flights using images taken with a high-speed video camera.

Other butterflies, whose bodies are heavier in relation to their wing area and whose wings are more easily articulated, exert much more active control over their flight surfaces. To date most ornithopter research has focused on this type of flight regime.

Flapping-wing flight is enjoying a resurgence of interest lately as robotics and biomimetics boffins seek to duplicate the various feats that birds and bugs perform easily yet which tend to stymie more conventional airframes such as small unmanned helicopters or planes. Examples include manoeuvres in confined spaces and accurate landings on tiny perches.

US company Aerovironment, for one, is known to be working on a so-called Nano Air Vehicle, thought to use flapping wings, for use by the US military. The new Japanese butterfly research could make such machines simpler and cheaper to build.

Tanaka and Shimoyama publish their research today in the journal Bioinspiration and Biomimetics. ®

The Essential Guide to IT Transformation

More from The Register

next story
Just TWO climate committee MPs contradict IPCC: The two with SCIENCE degrees
'Greenhouse effect is real, but as for the rest of it ...'
Asteroid's DINO KILLING SPREE just bad luck – boffins
Sauricide WASN'T inevitable, reckon scientists
Flamewars in SPAAACE: cooler fires hint at energy efficiency
Experiment aboard ISS shows we should all chill out for cleaner engines
Boffins discuss AI space program at hush-hush IARPA confab
IBM, MIT, plenty of others invited to fill Uncle Sam's spy toolchest, but where's Google?
NASA Mars rover FINALLY equals 1973 Soviet benchmark
Yet to surpass ancient Greek one, however
Famous 'Dish' radio telescope to be emptied in budget crisis: CSIRO
Radio astronomy suffering to protect Square Kilometre Array
BEST BATTERY EVER: All lithium, all the time, plus a dash of carbon nano-stuff
We have found the Holy Grail (of batteries) - boffins
prev story

Whitepapers

Implementing global e-invoicing with guaranteed legal certainty
Explaining the role local tax compliance plays in successful supply chain management and e-business and how leading global brands are addressing this.
Consolidation: The Foundation for IT Business Transformation
In this whitepaper learn how effective consolidation of IT and business resources can enable multiple, meaningful business benefits.
Backing up Big Data
Solving backup challenges and “protect everything from everywhere,” as we move into the era of big data management and the adoption of BYOD.
Boost IT visibility and business value
How building a great service catalog relieves pressure points and demonstrates the value of IT service management.
Why and how to choose the right cloud vendor
The benefits of cloud-based storage in your processes. Eliminate onsite, disk-based backup and archiving in favor of cloud-based data protection.