Feeds

Why Enterprise Analytics - and why now?

It's big and it's heading your way

Top 5 reasons to deploy VMware with Tegile

There are markets where undifferentiated, dog-eat-dog competition has existed for decades. The best real-world example of this type of environment is the financial services industry. Think about portfolio managers: they’re competing against hundreds of others, making decisions based on the same publicly available information, and trying to eke out a few more basis points than the other guy.

To make their trading decisions and guide their short- and long-term strategy, they have built huge and highly complex models that attempt to mimic reality and predict future prices based on current trends and conditions. These models are their crown jewels, and are closely guarded.

They don’t stop at analyzing particular companies but also consider economic trends, demographics, societal evolution, and just about anything else that might have an effect on what they’re trying to predict. Regression helps them characterize the relevance and predictive strength of a particular factor, while techniques like Monte Carlo are used to compute the probability of the result or condition.

This type of analysis has gotten a black eye due to the recent financial meltdown arising from the mortgage-backed securities debacle. Our research into the root causes lead us to believe that the failure wasn’t in the models, but in the values input into them and the idiots who relied upon them (see our previous article). The bottom line is that the math works, but the models and the humans interpreting them can often be flawed.

But just as the crappy bookshelves I build aren’t an indictment of power screwdrivers as tools, bad results from mistaken modeling doesn’t mean the modeling techniques don’t work – they do. And it’s the next phase in business. We’re going to see more and more companies attempting to model everything from their supply chain to long-term customer behavior in a much deeper and more predictive sense than before.

While some may say that we’ve been doing this all along, I’m not so sure. Most of the business intelligence that I’ve seen in the real world tends to use company-generated data to make short-term predictions. Many companies still don’t have their internal BI systems to a point where they can be used to run through scads of data (1 scad = a hell of a lot of data) to find non-intuitive relationships.

In many cases, management uses their decision support systems to support their hunches and speculations rather than let themselves and their strategies be guided by the data. Part of this is because they don’t feel that the data is reliable – and they’re often right about this. But they are also fearful that letting data actually drive their strategy means they are less valuable. Like most important trends, the adoption of predictive enterprise analytics and what we’re calling the “Analytics-Led Enterprise” will be hindered more by internal culture than by technical factors.

As the trend emerges it’s going to have definite implications on the IT market as a whole and HPC in particular. These business problems look awfully HPC-like when you consider the workloads and scale. The same folks who can analyze and predict how gas molecules will react in a pipe can use their tools to model how shoppers will move through a crowded store… and come up with predictions of how changes will impact traffic at the cash register. It’s all data and math, right?

Choosing a cloud hosting partner with confidence

More from The Register

next story
NSA SOURCE CODE LEAK: Information slurp tools to appear online
Now you can run your own intelligence agency
Azure TITSUP caused by INFINITE LOOP
Fat fingered geo-block kept Aussies in the dark
NASA launches new climate model at SC14
75 days of supercomputing later ...
Yahoo! blames! MONSTER! email! OUTAGE! on! CUT! CABLE! bungle!
Weekend woe for BT as telco struggles to restore service
Cloud unicorns are extinct so DiData cloud mess was YOUR fault
Applications need to be built to handle TITSUP incidents
BOFH: WHERE did this 'fax-enabled' printer UPGRADE come from?
Don't worry about that cable, it's part of the config
Stop the IoT revolution! We need to figure out packet sizes first
Researchers test 802.15.4 and find we know nuh-think! about large scale sensor network ops
SanDisk vows: We'll have a 16TB SSD WHOPPER by 2016
Flash WORM has a serious use for archived photos and videos
Astro-boffins start opening universe simulation data
Got a supercomputer? Want to simulate a universe? Here you go
prev story

Whitepapers

Designing and building an open ITOA architecture
Learn about a new IT data taxonomy defined by the four data sources of IT visibility: wire, machine, agent, and synthetic data sets.
The total economic impact of Druva inSync
Examining the ROI enterprises may realize by implementing inSync, as they look to improve backup and recovery of endpoint data in a cost-effective manner.
A strategic approach to identity relationship management
ForgeRock commissioned Forrester to evaluate companies’ IAM practices and requirements when it comes to customer-facing scenarios versus employee-facing ones.
Reg Reader Research: SaaS based Email and Office Productivity Tools
Read this Reg reader report which provides advice and guidance for SMBs towards the use of SaaS based email and Office productivity tools.
Business security measures using SSL
Examines the major types of threats to information security that businesses face today and the techniques for mitigating those threats.