Feeds

Global warming dirt-carbon peril models are wrong, say boffins

Greenhouse experiments show reduced greenhouse effect

New hybrid storage solutions

The world may not be doomed after all, according to top American dirt scientists. Soil-dwelling microbes, expected in climate models to go into CO2-spewing "overdrive" as the world warms, refused to do so in experiments.

Researchers started a greenhouse warming experiment in Alaska's boreal forest in 2005. Credit: Steven D Allison

This is how you create a greenhouse effect.

According to a statement released this week by the US National Science Foundation, which funded the research:

Conventional scientific wisdom holds that even a few degrees of human-caused climate warming will shift fungi and bacteria that consume soil-based carbon into overdrive, and that their growth will accelerate the release of carbon dioxide into the atmosphere.

This conventional wisdom now appears to be wrong, as research conducted by University of California ecologist Steve Allison have shown that in fact the carbon-eating microbes' planet-busting activities are reduced, not increased, by warmth.

Allison developed a new climate model based on experimental results showing what happened in soils which had been warmed up artificially in greenhouses over a period of several years. There is an initial increase in microbial emissions, which has been the basis for existing models, but after a while the microbes "overheat" and their numbers - and CO2 output - plunge.

"When we developed a model based on the actual biology of soil microbes, we found that soil carbon may not be lost to the atmosphere as the climate warms," Allison says. "Conventional ecosystem models that didn't include enzymes did not make the same predictions."

The flow of carbon in and out of the Earth's soils is thought to be one of the biggest factors in the amount of greenhouse effect experienced by the planet, so the new results could have a major effect on climate forecasts and related government policies. Allison cautions that more research is needed, but seems confident that the microbe menace is not as severe as had been thought.

"We need to develop more models to include microbe diversity," he says. "But the general principle that's important in our model is the decline of carbon dioxide production after an initial increase."

Allison and his colleagues' research appears online this week in Nature Geoscience. ®

Secure remote control for conventional and virtual desktops

More from The Register

next story
Boffins say they've got Lithium batteries the wrong way around
Surprises at the nano-scale mean our ideas about how they charge could be all wrong
Thought that last dinosaur was BIG? This one's bloody ENORMOUS
Weighed several adult elephants, contend boffins
City hidden beneath England's Stonehenge had HUMAN ABATTOIR. And a pub
Boozed-up ancients drank beer before tearing corpses apart
'Duck face' selfie in SPAAAACE: Rosetta's snap with bird comet
Probe prepares to make first landing on fast-moving rock
Archaeologists and robots on hunt for more Antikythera pieces
How much of the world's oldest computer can they find?
LOHAN invites ENTIRE REG READERSHIP to New Mexico shindig
Well, those of you who back our Kickstarter tin-rattling...
prev story

Whitepapers

Providing a secure and efficient Helpdesk
A single remote control platform for user support is be key to providing an efficient helpdesk. Retain full control over the way in which screen and keystroke data is transmitted.
Top 5 reasons to deploy VMware with Tegile
Data demand and the rise of virtualization is challenging IT teams to deliver storage performance, scalability and capacity that can keep up, while maximizing efficiency.
Reg Reader Research: SaaS based Email and Office Productivity Tools
Read this Reg reader report which provides advice and guidance for SMBs towards the use of SaaS based email and Office productivity tools.
Security for virtualized datacentres
Legacy security solutions are inefficient due to the architectural differences between physical and virtual environments.
Secure remote control for conventional and virtual desktops
Balancing user privacy and privileged access, in accordance with compliance frameworks and legislation. Evaluating any potential remote control choice.