Feeds

Global warming dirt-carbon peril models are wrong, say boffins

Greenhouse experiments show reduced greenhouse effect

A new approach to endpoint data protection

The world may not be doomed after all, according to top American dirt scientists. Soil-dwelling microbes, expected in climate models to go into CO2-spewing "overdrive" as the world warms, refused to do so in experiments.

Researchers started a greenhouse warming experiment in Alaska's boreal forest in 2005. Credit: Steven D Allison

This is how you create a greenhouse effect.

According to a statement released this week by the US National Science Foundation, which funded the research:

Conventional scientific wisdom holds that even a few degrees of human-caused climate warming will shift fungi and bacteria that consume soil-based carbon into overdrive, and that their growth will accelerate the release of carbon dioxide into the atmosphere.

This conventional wisdom now appears to be wrong, as research conducted by University of California ecologist Steve Allison have shown that in fact the carbon-eating microbes' planet-busting activities are reduced, not increased, by warmth.

Allison developed a new climate model based on experimental results showing what happened in soils which had been warmed up artificially in greenhouses over a period of several years. There is an initial increase in microbial emissions, which has been the basis for existing models, but after a while the microbes "overheat" and their numbers - and CO2 output - plunge.

"When we developed a model based on the actual biology of soil microbes, we found that soil carbon may not be lost to the atmosphere as the climate warms," Allison says. "Conventional ecosystem models that didn't include enzymes did not make the same predictions."

The flow of carbon in and out of the Earth's soils is thought to be one of the biggest factors in the amount of greenhouse effect experienced by the planet, so the new results could have a major effect on climate forecasts and related government policies. Allison cautions that more research is needed, but seems confident that the microbe menace is not as severe as had been thought.

"We need to develop more models to include microbe diversity," he says. "But the general principle that's important in our model is the decline of carbon dioxide production after an initial increase."

Allison and his colleagues' research appears online this week in Nature Geoscience. ®

The Essential Guide to IT Transformation

More from The Register

next story
Just TWO climate committee MPs contradict IPCC: The two with SCIENCE degrees
'Greenhouse effect is real, but as for the rest of it ...'
Boffins spot weirder quantum capers as neutrons take the high road, spin takes the low
Cheshire cat effect see neutrons and their properties walk different paths
Brit amateur payload set to complete full circle around PLANET EARTH
Ultralight solar radio tracker in glorious 25,000km almost-space odyssey
NASA Mars rover FINALLY equals 1973 Soviet benchmark
Yet to surpass ancient Greek one, however
Famous 'Dish' radio telescope to be emptied in budget crisis: CSIRO
Radio astronomy suffering to protect Square Kilometre Array
BEST BATTERY EVER: All lithium, all the time, plus a dash of carbon nano-stuff
We have found the Holy Grail (of batteries) - boffins
prev story

Whitepapers

7 Elements of Radically Simple OS Migration
Avoid the typical headaches of OS migration during your next project by learning about 7 elements of radically simple OS migration.
Implementing global e-invoicing with guaranteed legal certainty
Explaining the role local tax compliance plays in successful supply chain management and e-business and how leading global brands are addressing this.
Consolidation: The Foundation for IT Business Transformation
In this whitepaper learn how effective consolidation of IT and business resources can enable multiple, meaningful business benefits.
Solving today's distributed Big Data backup challenges
Enable IT efficiency and allow a firm to access and reuse corporate information for competitive advantage, ultimately changing business outcomes.
A new approach to endpoint data protection
What is the best way to ensure comprehensive visibility, management, and control of information on both company-owned and employee-owned devices?