Feeds

'Beauty with antimatter bottom' created out of pure energy

Decayed nega-derrière explodes shortly afterwards

Build a business case: developing custom apps

Physicists at the Large Hadron Collider (LHC), the most powerful particle punisher ever assembled by the human race, say that experiments there are going well. In particular, they have managed to create out of pure energy a thing which they describe as a "beauty" featuring an antimatter bottom.

LHCb Beauty particle collision graphics. Credit: CERN

Hold on, I don't understand what's happening here

LHCb pic showing Beauty decay tracks. Credit: CERN

Ah, that's much clearer. Crikey, look at the quarks on that little beauty

The unbelievably tiny creation was picked up this week by assiduous boffins trawling through some ten million pics taken by the vast LHCb experiment situated deep underground on the subterranean superchilled superconducting supermagnet proton-ring circuit of the Collider, just outside Geneva.

According to the LHCb scientists:

LHCb has reconstructed its first Beauty Particle! The Beauty Particle (called B+) is composed of an anti-quark b (that has a very short lifetime of 1.5 thousandth of a nanosecond!) and a quark u.

The quark b is known in some circles as a "bottom" quark, so this is plainly an anti-bottom.*

It seems that the B+ beauty was produced by the head-on collision of two protons travelling at light speed, rammed into one another by the crossing of the LHC's twin opposing proton ring beams within the LHCb detecto-cavern complex.

If we're following the scientists' explanation correctly*, the newly created B+ actually had about five times as much mass as the two protons which had crashed into one another to call it into being: in effect, most of the beauty sprang out of nowhere during the collision as the outrageous energies carried by the LHC's colliding particle beams were converted into mass, in a reversal of the process which turns the Sun's matter into sunlight.

"Yes, we can create mass from energy using the famous Einstein formula E=mc2," report the LHCb boffins, with pardonable smugness.

They proved this by working out that the beauty with the antimatter bottom, after travelling about 2 millimetres, exploded and turned into a shower of other subatomic gumble including a Kaon (which is, as any fule kno, one of four types of meson whose strangeness is non-zero) and a thing known as an "excited charmonium". The latter then came to bits again again, as you'd expect, into a muon and an anti-muon.

By some process involving extremely hard sums and possibly some type of reinforced, extremely close-fitting hat to prevent their heads exploding (we could do with one of those just writing about it) the boffins managed to identify all of this on the mad snakes' wedding of particle tracks pictured above and add up how much the original antibottomed beauty had weighed (5.32 Giga-electron-Volts, in case you're wondering) pleasingly confirming that they had indeed summoned matter - and antimatter - into existence using only French and Swiss grid electricity.

Quite apart from being good clean fun, boffins hope that this sort of business will solve the so-called "puzzling antimatter" problem, namely: where is all the antimatter?

According to physics, antimatter and regular stuff should have been created in equal amounts at the Big Bang, yet somehow we've managed to arrive at a universe full of regular-flavour matter and pretty much no antimatter at all.

According to CERN boffins this means that pretty much the whole of physics is wrong, which seems to be pretty much normal for physics:

Since the disappearance of primordial antimatter cannot be explained by the current Standard Model theory, it is clear that we have to look for something new. Scientists are exploring different avenues but, given the fact that what we observe represents only about 4% of the total energy and matter that the Universe is made of, one can guess that part of the key to solving the antimatter mystery could be held in the yet unknown part of the Universe.

Apparently the key to the business involves looking into something called "CP-violation", which is some sort of deviance from normal behaviour on the part of antibottom beauties and their relatives - thus the more of them that can be created at the LHC, the sooner the missing 96 per cent of the universe can be tracked down - perhaps hidden in another dimension or something.

We here on the Reg antimatter-saucy-pictures desk say: good luck to them. We're off to treat our aching brains with some specialised tonic fluids, invaluable in cases of this sort, down at the pub. ®

*STANDARD REG SCIENCE QUALITY WARNING: The chance that we are following this correctly is roughly equivalent to that of a man with no arms throwing a handful of jelly through a falling doughnut at fifty yards without touching the sides.

Next gen security for virtualised datacentres

More from The Register

next story
Boffins attempt to prove the UNIVERSE IS JUST A HOLOGRAM
Is this the real life? Is this just fantasy?
China building SUPERSONIC SUBMARINE that travels in a BUBBLE
Shanghai to San Fran in two hours would be a trick, though
Our LOHAN spaceplane ballocket Kickstarter climbs through £8000
Through 25 per cent but more is needed: Get your UNIQUE rewards!
CRR-CRRRK, beep, beep: Mars space truck backs out of slippery sand trap
Curiosity finds new drilling target after course correction
SpaceX prototype rocket EXPLODES over Texas. 'Tricky' biz, says Elon Musk
No injuries or near injuries. Flight stayed in designated area
Galileo, Galileo! Galileo, Galileo! Galileo fit to go. Magnifico
I'm just a poor boy, nobody loves me. But at least I can find my way with ESA GPS by 2017
Astronomers scramble for obs on new comet
Amateur gets fifth confirmed discovery
prev story

Whitepapers

A new approach to endpoint data protection
What is the best way to ensure comprehensive visibility, management, and control of information on both company-owned and employee-owned devices?
Implementing global e-invoicing with guaranteed legal certainty
Explaining the role local tax compliance plays in successful supply chain management and e-business and how leading global brands are addressing this.
Maximize storage efficiency across the enterprise
The HP StoreOnce backup solution offers highly flexible, centrally managed, and highly efficient data protection for any enterprise.
How modern custom applications can spur business growth
Learn how to create, deploy and manage custom applications without consuming or expanding the need for scarce, expensive IT resources.
Next gen security for virtualised datacentres
Legacy security solutions are inefficient due to the architectural differences between physical and virtual environments.