Feeds

'Beauty with antimatter bottom' created out of pure energy

Decayed nega-derrière explodes shortly afterwards

Security for virtualized datacentres

Physicists at the Large Hadron Collider (LHC), the most powerful particle punisher ever assembled by the human race, say that experiments there are going well. In particular, they have managed to create out of pure energy a thing which they describe as a "beauty" featuring an antimatter bottom.

LHCb Beauty particle collision graphics. Credit: CERN

Hold on, I don't understand what's happening here

LHCb pic showing Beauty decay tracks. Credit: CERN

Ah, that's much clearer. Crikey, look at the quarks on that little beauty

The unbelievably tiny creation was picked up this week by assiduous boffins trawling through some ten million pics taken by the vast LHCb experiment situated deep underground on the subterranean superchilled superconducting supermagnet proton-ring circuit of the Collider, just outside Geneva.

According to the LHCb scientists:

LHCb has reconstructed its first Beauty Particle! The Beauty Particle (called B+) is composed of an anti-quark b (that has a very short lifetime of 1.5 thousandth of a nanosecond!) and a quark u.

The quark b is known in some circles as a "bottom" quark, so this is plainly an anti-bottom.*

It seems that the B+ beauty was produced by the head-on collision of two protons travelling at light speed, rammed into one another by the crossing of the LHC's twin opposing proton ring beams within the LHCb detecto-cavern complex.

If we're following the scientists' explanation correctly*, the newly created B+ actually had about five times as much mass as the two protons which had crashed into one another to call it into being: in effect, most of the beauty sprang out of nowhere during the collision as the outrageous energies carried by the LHC's colliding particle beams were converted into mass, in a reversal of the process which turns the Sun's matter into sunlight.

"Yes, we can create mass from energy using the famous Einstein formula E=mc2," report the LHCb boffins, with pardonable smugness.

They proved this by working out that the beauty with the antimatter bottom, after travelling about 2 millimetres, exploded and turned into a shower of other subatomic gumble including a Kaon (which is, as any fule kno, one of four types of meson whose strangeness is non-zero) and a thing known as an "excited charmonium". The latter then came to bits again again, as you'd expect, into a muon and an anti-muon.

By some process involving extremely hard sums and possibly some type of reinforced, extremely close-fitting hat to prevent their heads exploding (we could do with one of those just writing about it) the boffins managed to identify all of this on the mad snakes' wedding of particle tracks pictured above and add up how much the original antibottomed beauty had weighed (5.32 Giga-electron-Volts, in case you're wondering) pleasingly confirming that they had indeed summoned matter - and antimatter - into existence using only French and Swiss grid electricity.

Quite apart from being good clean fun, boffins hope that this sort of business will solve the so-called "puzzling antimatter" problem, namely: where is all the antimatter?

According to physics, antimatter and regular stuff should have been created in equal amounts at the Big Bang, yet somehow we've managed to arrive at a universe full of regular-flavour matter and pretty much no antimatter at all.

According to CERN boffins this means that pretty much the whole of physics is wrong, which seems to be pretty much normal for physics:

Since the disappearance of primordial antimatter cannot be explained by the current Standard Model theory, it is clear that we have to look for something new. Scientists are exploring different avenues but, given the fact that what we observe represents only about 4% of the total energy and matter that the Universe is made of, one can guess that part of the key to solving the antimatter mystery could be held in the yet unknown part of the Universe.

Apparently the key to the business involves looking into something called "CP-violation", which is some sort of deviance from normal behaviour on the part of antibottom beauties and their relatives - thus the more of them that can be created at the LHC, the sooner the missing 96 per cent of the universe can be tracked down - perhaps hidden in another dimension or something.

We here on the Reg antimatter-saucy-pictures desk say: good luck to them. We're off to treat our aching brains with some specialised tonic fluids, invaluable in cases of this sort, down at the pub. ®

*STANDARD REG SCIENCE QUALITY WARNING: The chance that we are following this correctly is roughly equivalent to that of a man with no arms throwing a handful of jelly through a falling doughnut at fifty yards without touching the sides.

Security for virtualized datacentres

More from The Register

next story
Boffins who stare at goats: I do believe they’re SHRINKING
Alpine chamois being squashed by global warming
What's that STINK? Rosetta probe shoves nose under comet's tail
Rotten eggs, horse dung and almonds – yuck
Comet Siding Spring revealed as flying molehill
Hiding from this space pimple isn't going to do humanity's reputation any good
Kip Thorne explains how he created the black hole for Interstellar
Movie special effects project spawns academic papers on gravitational lensing
Experts brand LOHAN's squeaky-clean box
Phytosanitary treatment renders Vulture 2 crate fit for export
LONG ARM of the SAUR: Brachially gifted dino bone conundrum solved
Deinocheirus mirificus was a bit of a knuckle dragger
Moment of truth for LOHAN's servos: Our US allies are poised for final test flight
Will Vulture 2 freeze at altitude? Edge Research Lab to find out
prev story

Whitepapers

Why cloud backup?
Combining the latest advancements in disk-based backup with secure, integrated, cloud technologies offer organizations fast and assured recovery of their critical enterprise data.
A strategic approach to identity relationship management
ForgeRock commissioned Forrester to evaluate companies’ IAM practices and requirements when it comes to customer-facing scenarios versus employee-facing ones.
Security for virtualized datacentres
Legacy security solutions are inefficient due to the architectural differences between physical and virtual environments.
Reg Reader Research: SaaS based Email and Office Productivity Tools
Read this Reg reader report which provides advice and guidance for SMBs towards the use of SaaS based email and Office productivity tools.
New hybrid storage solutions
Tackling data challenges through emerging hybrid storage solutions that enable optimum database performance whilst managing costs and increasingly large data stores.