Feeds

Cray's midrange line big on Xeons, GPUs

Packing some Nehalem-EX punch

7 Elements of Radically Simple OS Migration

The CX1000-C blades support Microsoft's Windows HPC Server 2008 and Red Hat's Enterprise Linux 5 operating systems. Cray Cluster Manager variant of Platform Computing's LSF and Adaptive Software tools is tossed in as well.

The CX1000-G is a blade setup as well, but it marries Xeon 5600 blades with Nvidia's M1060 GPU co-processors to boost number crunching for certain kinds of workloads where GPUs make sense. The CX1000 chassis is essentially the same 7U chassis with the electronics and two fan blades at the top center of the chassis. But the machine has nine double-wide, half-height, two-socket blade servers based on the Xeon 5600s and including two of the M1060 GPUs on each blade.

The CX1000-G blades have only six DDR3 memory slots, so you have to use more expensive 8 GB modules to get up to 48 GB of memory per blade. The GPU blades have two ConnectX InfiniBand adapters to link out to the 36-port InfiniBand switch in the chassis, presumably double the pipes because there are four computing elements per blade (two CPUs and two GPUs) instead of two with the CX1000-C blades (two CPUs). The CX1000-G blades have room for one SATA or SSD drive, like their C series counterparts.

The last, and perhaps most interesting, of the new CX1000 midrange supers will be based on the Nehalem-EX Xeon 7500 processors, due from Intel on March 30. Cray is not at liberty to say much about these machines, but did offer some hints.

If the CX1000-C represents scale out supercomputing and the CX1000-G represents "scale through" computing (a new term as far as I know for using GPUs to augment CPUs), then the CX1000-S machines will deliver "scale up" HPC with a "fat memory node". The Xeon 5600 tops out at two-socket SMP, so that leaves the eight-core Xeon 7500s, their QuickPath Interconnect, and Intel's "Boxboro" chipset for its most recent Xeon MP and Itanium processors to make SMP nodes that will scale to 128 cores in a single system image. That would be a 16-socket box. As far as anyone knows, Intel is not offering such a chipset, but IBM and Bull have their respective eX5 and Fame 2G chipsets in the works.

Cray could have done its own chipset, of course, but it is equally likely that the company is licensing either the IBM or Bull chipsets. Considering Cray's intense competition with IBM (despite that Cray chief executive officer Peter Ungaro used to run IBM's supercomputer business), using IBM's eX5 chipset seems unlikely if possible. IBM has not said anything about its plans for Nehalem-EX machines beyond four sockets, but according to information obtained by The Register last summer, Bull's Fame 2G chipset (anchored by the Bull Coherent Switch) and related Mesca blade servers were designed to scale up to 16 sockets and offer up to eight DDR3 memory slots per socket.

The Mesca blade servers have four sockets and up to 256 GB per blade, and four of these are lashed together to make a 16-socket, 128-core, 1 TB fat node. InfiniBand switches could be used to link multiple nodes together if necessary, but it seems like the CX1000-S is aimed at providing a single fat node for local and departmental HPC work where having a big memory space to play in is more important than having lots of cores.

Cray could easily make CX1000-C and CX1000-G equivalents using AMD's future eight-core Opteron 4100 and imminent twelve-core Opteron 6100 processors (due on March 29). But making a fat node system is more problematic, since AMD's own chipsets for the Opteron 6100s are topping out at four sockets and 384 GB of main memory using 8 GB DIMMs. This is a reasonably fat node, to be sure. But it is not 1 TB.

The Cray CX1000-C and CS1000-G machines are available now, with entry configurations costing under $100,000. The feeds and speeds of entry configs were not available at press time. Cray has not said when it plans to put Fermi GPUs in the blades, which are the ones that customers really want because they have more oomph and error correction as well. ®

Best practices for enterprise data

More from The Register

next story
Sysadmin Day 2014: Quick, there's still time to get the beers in
He walked over the broken glass, killed the thugs... and er... reconnected the cables*
VMware builds product executables on 50 Mac Minis
And goes to the Genius Bar for support
Multipath TCP speeds up the internet so much that security breaks
Black Hat research says proposed protocol will bork network probes, flummox firewalls
Auntie remains MYSTIFIED by that weekend BBC iPlayer and website outage
Still doing 'forensics' on the caching layer – Beeb digi wonk
Microsoft's Euro cloud darkens: US FEDS can dig into foreign servers
They're not emails, they're business records, says court
Microsoft says 'weird things' can happen during Windows Server 2003 migrations
Fix coming for bug that makes Kerberos croak when you run two domain controllers
Cisco says network virtualisation won't pay off everywhere
Another sign of strain in the Borg/VMware relationship?
prev story

Whitepapers

7 Elements of Radically Simple OS Migration
Avoid the typical headaches of OS migration during your next project by learning about 7 elements of radically simple OS migration.
Implementing global e-invoicing with guaranteed legal certainty
Explaining the role local tax compliance plays in successful supply chain management and e-business and how leading global brands are addressing this.
Consolidation: The Foundation for IT Business Transformation
In this whitepaper learn how effective consolidation of IT and business resources can enable multiple, meaningful business benefits.
Solving today's distributed Big Data backup challenges
Enable IT efficiency and allow a firm to access and reuse corporate information for competitive advantage, ultimately changing business outcomes.
A new approach to endpoint data protection
What is the best way to ensure comprehensive visibility, management, and control of information on both company-owned and employee-owned devices?