Feeds

Intel Labs unveils PC power plans

'Humongous' savings, tiny batteries

Build a business case: developing custom apps

Engineers at Intel Labs are toiling away at a "holistic approach" to energy savings that could result in lower-power processors, shrunken power bricks and batteries and worldwide power bills shrinking by billions of dollars.

At a gathering of reporters Thursday in San Francisco, the director of circuits and system research at Intel Labs, Wen-Hann Wang, detailed the efforts of his small band of "world-class" engineers by dividing their focus into three areas: circuits, architecture, and platform.

Circuits: smaller and more resilient

The primary method of increasing a microprocessor's power efficiency has traditionally been to reduce its process size. At 32 nanometers, for example, Intel's recently released "Westmere" Core i7/5/3 processors have a transistor-to-transistor distance that's over 300 times smaller than the 10 micrometer process size of the company's 1971 groundbreaker, the 4004. And that power-saving shrinkage will continue: 22nm processors are expected to begin appearing next year.

But there's more to energy efficiency than mere process shrinkage. For example, Intel's high-k metal gate technology, first announced in late 2003 and first appearing in the 45nm Penryn line in 2007, launched in November 2007, not only allowed for further process shrinkage but also permitted lower threshold voltages.

Low threshold voltages - the minimum amount of juice a processor needs to come alive - are key to energy efficiency. At those low voltages, however, a processor's compute performance is also low - but as Wang pointed out: "Sometimes you don't need a lot of performance, like when you're doing email and a few applications."

Wang's team has a prototype "near threshold voltage" chip that can operate in a wide range of voltages, with compute power increasing as total voltage increases. And when operating near the threshold voltage, they claim to be able to increase energy efficiency by up to 800 per cent.

Unfortunately, when running a chip very near its threshold voltage, the signal-to-noise ratio is tight and errors can creep into the compute stream. In addition, a chip running on the margin will be highly susceptible to voltage droops. Add to that a number of other uncertainties that are present in even higher-voltage, higher compute-power situations, and things get dicey.

To the rescue come "resilient circuits," which Intel detailed at last month's International Solid-State Circuits Conference (ISSCC), and which The Reg covered in some depth here. Wang characterized the philosophy behind resilient circuits by channelling both Meher Baba and Bobby McFerrin: "Don't worry, be happy."

Intel resilient circuits

As an added bonus, resilient circuits remove performance-robbing "guardbands"

Simply put, resilient circuits allow processors to keep tabs on themselves and their error rates, and to swiftly rerun tasks that have generated errors due to variations in supply voltage, temperature changes, or because of transistors that are pooping out due to old age. The compute pipeline can also be momentarily slowed to reduce error rates.

According to Wang, Intel's prototype resilient-circuit silicon can achieve a 37 per cent power savings when compared to conventional circuits, or - when cranked up to higher voltages - can improve throughput by up to 21 per cent.

As an added bonus, adding those extra checks and balances to ensure resiliency has only a nominal effect upon the overall transistor and power budget: "It depends on how agressively you want to correct errors, so there's a range," Wang told The Reg. He claimed the overhead to be between three and five per cent: "It depends on how happy you want to be."

The essential guide to IT transformation

More from The Register

next story
Reg man looks through a Glass, darkly: Google's toy ploy or killer tech specs?
Tip: Put the shades on and you'll look less of a spanner
So, Apple won't sell cheap kit? Prepare the iOS garden wall WRECKING BALL
It can throw the low cost race if it looks to the cloud
Apple promises to lift Curse of the Drained iPhone 5 Battery
Have you tried turning it off and...? Never mind, here's a replacement
Now that's FIRE WIRE: HP recalls 6 MILLION burn-risk laptop cables
Right in the middle of Burning Mains Man week
One step closer to ROBOT BUTLERS: Dyson flashes vid of VACUUM SUCKER bot
Latest cleaner available for world+dog in September
Apple's iWatch? They cannae do it ... they don't have the POWER
Analyst predicts fanbois will have to wait until next year
HUGE iPAD? Maybe. HUGE ADVERTS? That's for SURE
Noo! Hand not big enough! Don't look at meee!
Samsung Gear S: Quick, LAUNCH IT – before Apple straps on iWatch
Full specs for wrist-mounted device here ... but who'll buy it?
AMD unveils 'single purpose' graphics card for PC gamers and NO ONE else
Chip maker claims the Radeon R9 285 is 'best in its class'
prev story

Whitepapers

Top 10 endpoint backup mistakes
Avoid the ten endpoint backup mistakes to ensure that your critical corporate data is protected and end user productivity is improved.
Implementing global e-invoicing with guaranteed legal certainty
Explaining the role local tax compliance plays in successful supply chain management and e-business and how leading global brands are addressing this.
Backing up distributed data
Eliminating the redundant use of bandwidth and storage capacity and application consolidation in the modern data center.
The essential guide to IT transformation
ServiceNow discusses three IT transformations that can help CIOs automate IT services to transform IT and the enterprise
Next gen security for virtualised datacentres
Legacy security solutions are inefficient due to the architectural differences between physical and virtual environments.