Feeds

Boffins builds lithium battery that can't explode

Solution: get rid of the metallic lithium

Security for virtualized datacentres

Scientists from Stanford University in the US have worked out how to build a lithium-sulphur battery that doesn't require a lithium metal electrode. That, they say, will make it free from the "serious safety issues" that have been holding the technology back.

Lithium-sulphur is seen as a strong contender for the next generation of rechargeable batteries because it can support an energy density far in excess of lithium-ion technology. The upshot: batteries can be made smaller and still support a higher capacity than li-ion equivalents. They're also made from cheaper and less toxic materials.

According to the team - Yuan Yang, Matthew T McDowell, Ariel Jackson, Judy J Cha, Seung Sae Hong and Yi Cu - their lithium metal free battery yields a theoretical specific energy of 1550Wh/kg, four times the 410Wh/kg theoretical specific energy of lithium-ion batteries with lithium-cobalt cathodes.

Stanford Lithium-Sulphur battery design

The Stanford battery design

One downside of lithium-sulphur battery design has been the construction of the battery negative electrode. Cathode designs have used lithium metal to help ensure the electrode has sufficient charge capacity. But lithium metal has a tendency to form tree-like crystal structures which can penetrate the the polymer material used to separate the battery's cathode from the positive electrode.

If that happens, the battery short-circuits and that can have literally explosive results.

The Stanford team builds on earlier work in the creation of "mesoporous carbon" electrodes. These are made from tiny, porous carbon rods into which liquid sulphur can be made to flow by capillary action. This key discovery ensures a very good electrical contact between carbon and sulfur, essential to make a workable lithium-sulfur battery design.

However, instead of the troublesome lithium metal, the boffins used lithium sulphide - Li2S - which doesn't promote the formation of battery breaking crystals.

The scientists said they had achieved a discharge specific energy of 630Wh/kg, 80 per cent higher than a typical lithium-ion battery can manage.

But problems remain. The biggest hurdle is the low charge-recharge cycle count: after five discharge and recharge cycles, the Stanford battery's capacity has fallen by two-thirds. After between 40 and 50 cycles, the battery stops holding any charge at all. ®

New hybrid storage solutions

More from The Register

next story
Apple iPhone 6: Missing sapphire glass screen FAIL explained
They just cannae do it in time, says analyst
Slap my Imp up: Bullfrog's Dungeon Keeper
Monsters need to earn a living too
Oh noes, fanbois! iPhone 6 Plus shipments 'DELAYED' in the UK
Is EMBIGGENED Apple mobile REALLY that popular?
Apple's big bang: iPhone 6, ANOTHER iPhone 6 Plus and WATCH OUT
Let's >sigh< see what Cupertino has been up to for the past year
The Apple Watch and CROTCH RUBBING. How are they related?
Plus: 'NostrilTime' wristjob vid action
Apple's SNEAKY plan: COPY ANDROID. Hello iPhone 6, Watch
Sizes, prices and all – but not for the wrist-o-puter
Apple Pay is a tidy payday for Apple with 0.15% cut, sources say
Cupertino slurps 15 cents from every $100 purchase
prev story

Whitepapers

Providing a secure and efficient Helpdesk
A single remote control platform for user support is be key to providing an efficient helpdesk. Retain full control over the way in which screen and keystroke data is transmitted.
Top 5 reasons to deploy VMware with Tegile
Data demand and the rise of virtualization is challenging IT teams to deliver storage performance, scalability and capacity that can keep up, while maximizing efficiency.
Reg Reader Research: SaaS based Email and Office Productivity Tools
Read this Reg reader report which provides advice and guidance for SMBs towards the use of SaaS based email and Office productivity tools.
Security for virtualized datacentres
Legacy security solutions are inefficient due to the architectural differences between physical and virtual environments.
Secure remote control for conventional and virtual desktops
Balancing user privacy and privileged access, in accordance with compliance frameworks and legislation. Evaluating any potential remote control choice.