Feeds

Micron to make even teenier NAND dies

25nm ain't small enough

Beginner's guide to SSL certificates

Not content with shrinking its NAND flash process to 25nm, Micron is heading below that level next year.

We don't know exactly how small the NAND dies are going to get but DigiTimes reports Micron will get there next year. The company hasn't even started mass-producing its 25nm product yet and it's pretty advanced. As Micron says, 25nm is 3,000 times smaller than the diameter of a human hair.

The company is buying rival Numonyx and partnering with Intel in the IMFT flash fabrication operation.

With the 25nm process. Micron is planning to build 8GB flash dies, with 2 bits per cell. A sub-25nm process might make 16GB, 2bit per cell dies possible, doubling NAND product capacity.

SanDisk and Toshiba are reported to be getting ready to build 24nm NAND in the second half of this year, moving on from their current 32nm process, and slightly leap-frogging Micron's 25nm process. They'll have both 2 bits per cell and 3 bits per cell product.

Analysts think SanDisk and Toshiba see 3 bit multi-level cell (MLC) as their preferred route to increasing flash capacity whereas Micron and Intel think process shrinkage is better. However Micron will produce 3bit MLC product, thinking it could be useful for solid state drives (SSDs) rather than portable media players and the like.

Micron is working on adding EZ-NAND (Error Correction Code - ECC - Zero NAND) flash, in which the NAND product does the ECC work instead of the host controller, simplifying the job of host controller manufacturers. EZ-NAND is part of the Open NAND Flash Interface (ONFI) Working Group's 3.0 specification. This should, Micron hopes, make its flash better suited for portable and consumer electronics applications. It says its 25nm, 8GB flash product could store 2,000 songs or 7,000 photos.

The sub-25nm product could increase that to 4,000 songs or 14,000 photos.

The current Micron flash product uses floating-gate technology transistors but Micron may change this to a charge trap-based technology. A floating gate in such a die is surrounded by highly resistive materials so, once charged, it retains its charge. The charge trap idea is to change this to a sandwich of layers with the inner layer having its charge trapped between the other layers. This technology can be made at smaller dimensions than floating gate flash. ®

Top 5 reasons to deploy VMware with Tegile

More from The Register

next story
IT crisis looming: 'What if AWS goes pop, runs out of cash?'
Public IaaS... something's gotta give - and it may be AWS
Linux? Bah! Red Hat has its eye on the CLOUD – and it wants to own it
CEO says it will be 'undisputed leader' in enterprise cloud tech
Oracle SHELLSHOCKER - data titan lists unpatchables
Database kingpin lists 32 products that can't be patched (yet) as GNU fixes second vuln
Ello? ello? ello?: Facebook challenger in DDoS KNOCKOUT
Gets back up again after half an hour though
Hey, what's a STORAGE company doing working on Internet-of-Cars?
Boo - it's not a terabyte car, it's just predictive maintenance and that
Troll hunter Rackspace turns Rotatable's bizarro patent to stone
News of the Weird: Screen-rotating technology declared unpatentable
prev story

Whitepapers

Providing a secure and efficient Helpdesk
A single remote control platform for user support is be key to providing an efficient helpdesk. Retain full control over the way in which screen and keystroke data is transmitted.
Intelligent flash storage arrays
Tegile Intelligent Storage Arrays with IntelliFlash helps IT boost storage utilization and effciency while delivering unmatched storage savings and performance.
Beginner's guide to SSL certificates
De-mystify the technology involved and give you the information you need to make the best decision when considering your online security options.
Security for virtualized datacentres
Legacy security solutions are inefficient due to the architectural differences between physical and virtual environments.
Secure remote control for conventional and virtual desktops
Balancing user privacy and privileged access, in accordance with compliance frameworks and legislation. Evaluating any potential remote control choice.