Feeds

Intel's 'Tukwila' Itaniums - hot n' pricey

How much for an upgrade?

Choosing a cloud hosting partner with confidence

What's the upgrade cost?

The issue is really what server makers will charge for upgrades for system boards using the Tukwila chips - if they even make upgrades possible, considering the changes in processor sockets, memory, and interconnect in making the jump from the prior dual-core "Montecito" Itanium 9000s and "Montvale" Itanium 9100s to the Tukwila Itanium 9300s.

Intel did not, by the way, cut the prices on these older Itanium chips in half, so customers who want better bang for the buck on their Itanium systems have to move forward.

The Itanium 9300 chips also sport better power management and the quiescing of cores inside the chip, which allows other cores in the Itanium 9300 to be slightly overclocked - what Intel calls Turbo Boost, a feature that is available in some of its Xeon family of server chips. The Turbo Boost is fairly modest, with a 7.5 to 9.8 per cent clock bump on the four-core versions of the Itanium 9300. The dual-core version of the chip, the Itanium 9310, doesn't have Turbo Boost at all and has its on-chip L3 cache cut down to 10 MB (5 MB per core).

This chip costs $946, and it will no doubt be used by Hewlett-Packard in blade servers where thermals are an issue. At 130 watts, it is going to be tough to put two of these Itanium 9310s on a single blade, and it would seem to be impossible to cram two of the Itanium 9340 (1.6 GHz) or 9350 (1.73 GHz) chips onto a blade, considering that each chip dissipates 185 watts.

That said, the performance per watt on the Tukwilas should be a little better than with the dual-core Montvales. The top-end Itanium 9150N had 24 MB of L3 cache for its two cores and burned 104 watts running at 1.66 GHz and 1.6 GHz. Depending on how clock speeds translate into performance and how you compare different Montvale and Tukwila chips at the high end of the line, this works out to a 10 to 15 per cent improvement in performance per watt.

Still, it is hard for Itanium to compete in terms of bang for the buck with the Nehalem and Westmere family of Xeon processors, the former announced last March and the latter due this March. The current X5570 has four cores running at 2.93 GHz (with eight threads), 8 MB of L2 cache on chip (no L3 cache), a 95 watt thermal envelope, and costs $1,386 each when bought in 1,000-unit quantities.

The one interesting thing that Intel has not talked about is what happens to performance on the Tukwilas with applications that are sensitive to L3 cache memory(like database transaction processing, for instance). When you compare roughly like-for-like Tukwila and Montvale chips, you have about the same cache memory in the SKUs, but Tukwila has half the cache memory per core.

This may have been the real reason that Intel pushed out Tukwila to graft on the buffered memory architecture - called the Scalable Memory Buffer) that is coming out later this quarter with the eight-core "Beckton" Nehalem-EX processors and is now part of the Itanium 9300 design. That buffered memory sits between standard DDR3 DIMMs and the memory controller on either the Itanium or Nehalem-EX chips. It actually sits on memory cards, apparently, that plug into the system boards. This memory buffering helps the Itanium 9300s to support 1 TB of main memory on a four-socket server, and presumably, it makes up for the smaller L3 cache memories.

By comparison, IBM's just announced Power7 chip can support only 512 GB across four sockets. But that Power 750 machine announced today also has 32 cores in those four sockets, with 128 threads, compared to the Tukwila's 16 cores and 32 threads. IBM's cores are also clocking in at roughly twice the clock speed too. (Although you have to be careful about comparing clocks across chip architectures).

It will be interesting to see how the performance of these two midrange boxes stack up to each other and to Nehalem-EX and systems based on Advanced Micro Devices' "Magny-Cours" twelve-core processors. The four-socket market is going to get very competitive - and very quickly. ®

Secure remote control for conventional and virtual desktops

More from The Register

next story
The cloud that goes puff: Seagate Central home NAS woes
4TB of home storage is great, until you wake up to a dead device
Azure TITSUP caused by INFINITE LOOP
Fat fingered geo-block kept Aussies in the dark
You think the CLOUD's insecure? It's BETTER than UK.GOV's DATA CENTRES
We don't even know where some of them ARE – Maude
Want to STUFF Facebook with blatant ADVERTISING? Fine! But you must PAY
Pony up or push off, Zuck tells social marketeers
Yahoo! blames! MONSTER! email! OUTAGE! on! CUT! CABLE! bungle!
Weekend woe for BT as telco struggles to restore service
Oi, Europe! Tell US feds to GTFO of our servers, say Microsoft and pals
By writing a really angry letter about how it's harming our cloud business, ta
prev story

Whitepapers

Why and how to choose the right cloud vendor
The benefits of cloud-based storage in your processes. Eliminate onsite, disk-based backup and archiving in favor of cloud-based data protection.
Forging a new future with identity relationship management
Learn about ForgeRock's next generation IRM platform and how it is designed to empower CEOS's and enterprises to engage with consumers.
Reg Reader Research: SaaS based Email and Office Productivity Tools
Read this Reg reader report which provides advice and guidance for SMBs towards the use of SaaS based email and Office productivity tools.
Business security measures using SSL
Examines the major types of threats to information security that businesses face today and the techniques for mitigating those threats.
Storage capacity and performance optimization at Mizuno USA
Mizuno USA turn to Tegile storage technology to solve both their SAN and backup issues.