Feeds

Intel sneak peeks Westmere EP server silicon

Four and six cores, Turbo Boost, AES

3 Big data security analytics techniques

Uncore power gating

With the Nehalem family of chips, Intel was able to power gate the transistors in each core to shut that core down when it wasn't used. The core state was saved in the on chip cache and the uncore region kept running at full power. With the Westmere family, there is power gating for each core, but now the uncore is also gated.

The two-core Westmere mobile chips also have a dedicated and power-sipping static RAM on the chip saves the state of the cores so on chip caches can be powered down when not in use. (Why the server variants of Westmere do not also have this SRAM state cache is unclear, but apparently it does not).

The Westmere-EP chips implement Intel's HyperThreading variant of simultaneous multithreading, which gives each core two virtual threads to present to the operating system or hypervisor running atop the chip. The Westmere chips also have new cryptographic instructions that implement the Advanced Encryption Standard (AES) algorithm for encrypting and decrypting data.

Another new twist with the Westmere-EPs is that the memory controllers embedded on the chips can support low-voltage DDR3 main memory, which runs at 1.35 volts as well as standard DDR3 memory, which runs at 1.5 volts. The net effect of this change is that memory DIMMs run about 20 percent cooler when using the low voltage parts without sacrificing performance.

The Westmere-EP chips used in servers will very likely be called the Xeon 5600s when they start shipping.

Another system-related paper that Intel will be presenting next week at ISSCC that looks like it might have immediate and practical benefits for high-throughput systems is a new kind of chip-to-chip interconnect that looks like it beats the pants off of QuickPath Interconnect, the processor and memory linkage scheme that Intel debuted with the Nehalem chips last year. This experimental interconnect, which was not given a name, has about ten times the power efficiency of moving data from chip to chip than the current scheme.

According to Randy Mooney, an Intel Fellow and director of I/O research at Intel Labs, the traditional interconnect (like QPI) has to go from a chip, down through the package, out over the motherboard and back up through the socket and package to reach the cores on the other side of the mobo.

Using QPI , moving a terabyte of data between chips in different sockets might take 150 watts of juice, but the direct link - which is bolted on top of the chip package and links the chips more or less directly to each other - was able to move a terabyte of data between the chips only burning 11 watts.

Perhaps more significantly, when this interconnect drops into sleep mode, it only burns 7 per cent of the juice it needs when it is running, and it can wake up from the sleep state 1,000 times faster than QPI does. ®

SANS - Survey on application security programs

More from The Register

next story
This time it's 'Personal': new Office 365 sub covers just two devices
Redmond also brings Office into Google's back yard
Kingston DataTraveler MicroDuo: Turn your phone into a 72GB beast
USB-usiness in the front, micro-USB party in the back
Dropbox defends fantastically badly timed Condoleezza Rice appointment
'Nothing is going to change with Dr. Rice's appointment,' file sharer promises
BOFH: Oh DO tell us what you think. *CLICK*
$%%&amp Oh dear, we've been cut *CLICK* Well hello *CLICK* You're breaking up...
Just what could be inside Dropbox's new 'Home For Life'?
Biz apps, messaging, photos, email, more storage – sorry, did you think there would be cake?
IT bods: How long does it take YOU to train up on new tech?
I'll leave my arrays to do the hard work, if you don't mind
Amazon reveals its Google-killing 'R3' server instances
A mega-memory instance that never forgets
prev story

Whitepapers

Designing a defence for mobile apps
In this whitepaper learn the various considerations for defending mobile applications; from the mobile application architecture itself to the myriad testing technologies needed to properly assess mobile applications risk.
3 Big data security analytics techniques
Applying these Big Data security analytics techniques can help you make your business safer by detecting attacks early, before significant damage is done.
Five 3D headsets to be won!
We were so impressed by the Durovis Dive headset we’ve asked the company to give some away to Reg readers.
The benefits of software based PBX
Why you should break free from your proprietary PBX and how to leverage your existing server hardware.
Securing web applications made simple and scalable
In this whitepaper learn how automated security testing can provide a simple and scalable way to protect your web applications.