Feeds

NASA flying-car man designs electric VTOL podcraft

'Puffin' tailsitter offers just 6 minutes' hover, though

The smart choice: opportunity from uncertainty

A NASA engineer long obsessed with flying cars has produced a concept design for a one-man, electrically powered helicopter/plane/glider podcraft. However the work was done largely without backing from NASA, and designer Mark Moore admits that battery technology must improve massively before the design becomes practical.

Moore, employed at NASA's Langley research centre in Virginia, is working on the "Puffin" aircraft - so dubbed because both are environmentally friendly and both look as though they can't fly* - with various partner organisations: MIT, Georgia tech, the US National Institute of Aerospace and private firm M-DOT.

Moore has long been a zealot in the cause of Personal Air Vehicles (PAVs, aircraft for everyman - essentially flying cars). He was formerly in charge of an actual NASA PAV project, which had a budget of $10m and was planned to produce a demonstrator "Tailfan" aircraft by last year.

The Tailfan would have been basically a light plane, but powered by a silenced car engine and fitted with a silenced ducted fan rather than a noisy propeller. The quiet Tailfan would have been capable of operating to and from from small airstrip-laybys in residential areas, and with the addition of modern robo-autopilot/air-traffic equipment (and perhaps the ability to drive on roads like the Terrafugia Transition) might have turned into a true PAV in time.

In the event, bosses at Langley "redirected funding" and terminated NASA's PAV activities in 2005. There was a NASA-funded tech prize, the PAV Challenge, but that was subsequently rebranded the "General Aviation Technology Challenge" and has now become the "Green Flight Challenge" - seeking aircraft which are low-carbon rather than ones which anybody could use.

But Moore evidently doesn't give up easily, because here he is back again with the Puffin. The aircraft's cunning landing-gear/tail, cleverly designed wing flaps and fiendish use of the many excellences of electric motors should allow it to operate somewhat like the "Tailsitter" prototypes of yesteryear, as opposed to today's Osprey tiltrotor. Rather than the rotors tilting and fuselage maintaining attitude, the whole lot will tip over into forward flight after making a vertical takeoff; and tip back again for landing to set down on its tail.

The Power of One Infographic

More from The Register

next story
World Solar Challenge contender claims new speed record
One charge sees Sunswift travel 500kms at over 100 km/h
SMELL YOU LATER, LOSERS – Dumbo tells rats, dogs... humans
Junk in the trunk? That's what people have
The Sun took a day off last week and made NO sunspots
Someone needs to get that lazy star cooking again before things get cold around here
Boffins discuss AI space program at hush-hush IARPA confab
IBM, MIT, plenty of others invited to fill Uncle Sam's spy toolchest, but where's Google?
Beancounters tell NASA it's too poor to fly planned mega-rocket
Space Launch System would need another $400m and a lot of time
Jurassic squawk: Dinos were Earth's early FEATHERED friends
Boffins research: Ancient dinos may all have had 'potential' fluff
Bad back? Show some spine and stop popping paracetamol
Study finds common pain-killer doesn't reduce pain or shorten recovery
prev story

Whitepapers

Top three mobile application threats
Prevent sensitive data leakage over insecure channels or stolen mobile devices.
Implementing global e-invoicing with guaranteed legal certainty
Explaining the role local tax compliance plays in successful supply chain management and e-business and how leading global brands are addressing this.
Boost IT visibility and business value
How building a great service catalog relieves pressure points and demonstrates the value of IT service management.
Designing a Defense for Mobile Applications
Learn about the various considerations for defending mobile applications - from the application architecture itself to the myriad testing technologies.
Build a business case: developing custom apps
Learn how to maximize the value of custom applications by accelerating and simplifying their development.