Feeds

Nvidia gets biological with life sciences nerds

Better shampoos through GPUs

Internet Security Threat Report 2014

Take drug discovery, says Gupta. It takes around five years in a wet lab to sort through millions of compounds to come up with thousands of possible drug leads that might lead to something that a pharma peddler can put through clinical trials and government approval processes, which themselves take maybe five to seven years. While the wet labs have been automated with robotics, there is a lot of trial and error and the mechanical processes still take a lot of time.

What Nvidia and its software partners want research labs to do instead is to use computational chemistry to simulate new compounds rather than synthesizing them physically, use virtual screening in a simulation to see if these fake compounds will bind to targeted proteins (which is how many medicines work), and then whittle down those millions of potential compounds down to thousands inside the computer.

"The idea is not to replace the wet labs, but to home in on the interesting compounds more quickly," says Gupta. "So instead of taking the shotgun approach with the wet lab, you do it in the simulation."

The methods and programs that pharmaceutical companies can deploy to find new drugs can be used to design all manner of new chemicals and materials. About half of the cycles on the TeraGrid in the United States (a cluster of clusters funded by the National Science Foundation) are burnt up running molecular simulations (29 per cent), chemical simulations (13 per cent) and materials simulations (6 per cent). So these applications could certainly use a boost from GPUs, and application providers are jockeying to make sure their applications can take advantage of GPUs.

Temple University did a research project with soap maker Proctor & Gamble to show how GPUs could be used to do a lot more flops for a lot less money. Temple's techies found that a personal supercomputer with two Tesla C1060 GPU co-processors could run P&G's molecular dynamics simulation twice as fast as 128 Opteron cores on its Cray XT3 super or 1,024 Power cores on its BlueGene/L super - once it was tuned for the GPUs, that is. That simulation is based on HOOMD, short for Highly Optimized Object Oriented Molecular Dynamics, a software package that was written by hackers at Ames Laboratory, funded by the US Department of Energy.

The Tesla Bio Workbench is not a product, but a community of hardware and software vendors. Thus far, AMBER, GROMACS, LAMMPS, NAMD, TeraChem, and VMD, which are molecular dynamics and quantum chemistry applications, have been tweaked to exploit Tesla GPUs, as have bioinformatics applications such as CUDASW++, GPU-HMMER, and MUMmerGPU.

Others will no doubt follow, and Nvidia will no doubt create workbench communities for engineering, financial, oil and gas, media and rendering, and other key industries where GPU co-processors will be snapped up enthusiastically. Mathematica and Matlab, two popular mathematics simulation programs from Wolfram Research and Mathworks, respectively, can already exploit Tesla GPUs. ®

Beginner's guide to SSL certificates

More from The Register

next story
Docker's app containers are coming to Windows Server, says Microsoft
MS chases app deployment speeds already enjoyed by Linux devs
'Hmm, why CAN'T I run a water pipe through that rack of media servers?'
Leaving Las Vegas for Armenia kludging and Dubai dune bashing
'Urika': Cray unveils new 1,500-core big data crunching monster
6TB of DRAM, 38TB of SSD flash and 120TB of disk storage
Facebook slurps 'paste sites' for STOLEN passwords, sprinkles on hash and salt
Zuck's ad empire DOESN'T see details in plain text. Phew!
SDI wars: WTF is software defined infrastructure?
This time we play for ALL the marbles
Windows 10: Forget Cloudobile, put Security and Privacy First
But - dammit - It would be insane to say 'don't collect, because NSA'
Oracle hires former SAP exec for cloudy push
'We know Larry said cloud was gibberish, and insane, and idiotic, but...'
prev story

Whitepapers

Forging a new future with identity relationship management
Learn about ForgeRock's next generation IRM platform and how it is designed to empower CEOS's and enterprises to engage with consumers.
Why cloud backup?
Combining the latest advancements in disk-based backup with secure, integrated, cloud technologies offer organizations fast and assured recovery of their critical enterprise data.
Win a year’s supply of chocolate
There is no techie angle to this competition so we're not going to pretend there is, but everyone loves chocolate so who cares.
High Performance for All
While HPC is not new, it has traditionally been seen as a specialist area – is it now geared up to meet more mainstream requirements?
Intelligent flash storage arrays
Tegile Intelligent Storage Arrays with IntelliFlash helps IT boost storage utilization and effciency while delivering unmatched storage savings and performance.