Feeds

Nvidia gets biological with life sciences nerds

Better shampoos through GPUs

Internet Security Threat Report 2014

Nvidia has a substantial lead over rivals Intel, Advanced Micro Devices, and IBM when it comes to peddling graphics co-processors, and it wants to keep that lead and extend it, if possible. That means doing boring old stuff that server and operating system makers have to do, such as lining up application software vendors so they can take full advantage of the Tesla family of GPU co-processors.

To that end, Nvidia has corralled a dozen popular life sciences applications vendors and made sure their code has been run through the CUDA programming environment and can leverage the substantial number-crunching power of Tesla co-processors.

According to Sumit Gupta, senior product manager of the Tesla line at Nvidia, there are more than 500,000 scientists worldwide who are using the computational methods employed in these applications. They are used to simulate molecular compounds and rudimentary organisms (or subsets of them), and they are mostly relying on beefed up x64 workstations and lots of time or lots of iron on a supercomputer but only a small slice of time to do their simulations.

With the Tesla Bio Workbench launched today, Nvidia and its software and hardware partners want life sciences researchers to get greedy and to crave more powerful workstations. These machines - a combination of x64 processors and GPU co-processors - mean that they won't have to share to run their simulations locally. They also want to add GPUs to supercomputer clusters to either simulate more complex molecules and organisms or run longer simulations than are possible on the workstations.

There is a direct relationship between the flops in a box and the complexity or duration of a simulation that box can run, and life sciences applications are no exception. Back in 1982, a top-of-the-line supercomputer with one gigaflops of performance could simulate the 3,000 atoms in the protein aprotinin, also known as bovine pancreatic trypsin inhibitor.

By 1997, a supercomputer with hundreds of gigaflops could simulate the 36,000 atoms in an estrogen receptor, and by 2003, a teraflops-class super could model the 327,000 atoms in the F1 portion of ATP synthase, which is cool because it is a molecular rotor powered by proton gradients inside the cell.

Huge progress has been made in recent years - the 2.7 million atoms in a ribosome being simulated in 2006, for example. The downer is that it took eight months on a massively parallel supercomputer with many hundreds of teraflops to simulate a mere 2 nanoseconds of the ribosome's behavior.

A petaflops supercomputer will be able to simulate the 50 million atoms in a chomatophore - pigment cells found in fish, lizards, amphibians, and other animals often used for camouflage. An exaflops super, by contrast - that's 1,000 petaflops, a performance level we might hit in two, three, or four years depending on who you ask - should be able to simulate a whole bacteria with billions of atoms.

But simulation time needs to increase and the time to run the simulation needs to decrease for these simulations to be useful. Gupta says that researchers need to be able to simulate somewhere between 1 to 100 microseconds, sometimes milliseconds, to do useful modelling of molecular interactions that might, for instance, show how a drug interacts with a cell.

Such speedups are going to require GPU co-processors, says Nvidia, and lots of them. And there are plenty of HPC researchers who are not sure that even this will be enough, as supercomputer designers face daunting power and cooling issues as they try to push up to the exaflops performance level.

The Tesla Bio Workbench is not just about complex molecular and bacterial simulations at the largest supercomputer centers, but doing practical things like discovering new drugs or designing a better shampoo or detergent more quickly than currently can be done.

Beginner's guide to SSL certificates

More from The Register

next story
Docker's app containers are coming to Windows Server, says Microsoft
MS chases app deployment speeds already enjoyed by Linux devs
'Hmm, why CAN'T I run a water pipe through that rack of media servers?'
Leaving Las Vegas for Armenia kludging and Dubai dune bashing
'Urika': Cray unveils new 1,500-core big data crunching monster
6TB of DRAM, 38TB of SSD flash and 120TB of disk storage
Facebook slurps 'paste sites' for STOLEN passwords, sprinkles on hash and salt
Zuck's ad empire DOESN'T see details in plain text. Phew!
SDI wars: WTF is software defined infrastructure?
This time we play for ALL the marbles
Windows 10: Forget Cloudobile, put Security and Privacy First
But - dammit - It would be insane to say 'don't collect, because NSA'
Oracle hires former SAP exec for cloudy push
'We know Larry said cloud was gibberish, and insane, and idiotic, but...'
Symantec backs out of Backup Exec: Plans to can appliance in Jan
Will still provide support to existing customers
prev story

Whitepapers

Forging a new future with identity relationship management
Learn about ForgeRock's next generation IRM platform and how it is designed to empower CEOS's and enterprises to engage with consumers.
Why cloud backup?
Combining the latest advancements in disk-based backup with secure, integrated, cloud technologies offer organizations fast and assured recovery of their critical enterprise data.
Win a year’s supply of chocolate
There is no techie angle to this competition so we're not going to pretend there is, but everyone loves chocolate so who cares.
High Performance for All
While HPC is not new, it has traditionally been seen as a specialist area – is it now geared up to meet more mainstream requirements?
Intelligent flash storage arrays
Tegile Intelligent Storage Arrays with IntelliFlash helps IT boost storage utilization and effciency while delivering unmatched storage savings and performance.