Feeds

Bendy flash memory raises prospect of flexible displays

Altered images

The essential guide to IT transformation

Flexible plastic computer displays have come closer as a result of a successful organic flash memory project led by University of Tokyo researchers.

Flexible flash memory could be used in other relatively large area applications, such as pressure sensors, actuators and electric ink book readers. This contrasts with NAND or NOR flash, which is used in physically small areas. The flexible flash display material has to withstand bending and the Tokyo researchers' material can deform up to a 6mm curve radius without its working being affected.

flexible plastic flash memory sheet

Flexible plastic sheet flash array (from Tech-on).

An organic flash memory transistor (OFMT) has two main components: a conducting floating gate which is wholly enclosed by an insulating gate dielectric material. It is layered onto a substrate material. The Tokyo-led researchers used a plastic sheet substrate made of a PEN (polyethylene naphthalate) resin sheet, on which they built a 676 cell (26 by 26) array. The PEN sheet was not melted by the floating gate production process, which has been a problem for other organic flash memory projects.

Flexible organic flash transistor

Floating gate transistor cross-section (copyright Science/AAAS).

The dielectric is formed of two layers; a self-assembling monolayer (SAM), about 2nm thick, built from phosphoric acid with an alkyl chain, described as n-octadecylphosphonic acid, and a 4nm aluminium oxide layer, forming a 6nm dielectric layer in total.

The floating gate is made of aluminium and its surface is oxidised to form the inner dielectric aluminium oxide layer. An aluminium control gate exists between the PEN and the floating gate transistor. An organic semiconductor made of pentacene is also used.

The Tokyo OFMT needes an applied charge of 6 volts applied to the dielectric to affect the polarity of the floating gate inside it, whereas other organic flash projects require 20 - 30 volts. Reading the setting of the floating gate requires a 1 volt charge. Apparently up to a 1,000 write-erase cycles have been demonstrated.

This is a prototype project which proves a concept. Its charge retention time is around 24 hours, which is not long enough at all, contrasting poorly with the months and years duration of silicon-based NAND flash. However, the researchers think that this can be extended by making the transistors smaller and extending the molecular length of the SAM. ®

Boost IT visibility and business value

More from The Register

next story
Pay to play: The hidden cost of software defined everything
Enter credit card details if you want that system you bought to actually be useful
Shoot-em-up: Sony Online Entertainment hit by 'large scale DDoS attack'
Games disrupted as firm struggles to control network
HP busts out new ProLiant Gen9 servers
Think those are cool? Wait till you get a load of our racks
Silicon Valley jolted by magnitude 6.1 quake – its biggest in 25 years
Did the earth move for you at VMworld – oh, OK. It just did. A lot
VMware's high-wire balancing act: EVO might drag us ALL down
Get it right, EMC, or there'll be STORAGE CIVIL WAR. Mark my words
Forrester says it's time to give up on physical storage arrays
The physical/virtual storage tipping point may just have arrived
prev story

Whitepapers

Top 10 endpoint backup mistakes
Avoid the ten endpoint backup mistakes to ensure that your critical corporate data is protected and end user productivity is improved.
Implementing global e-invoicing with guaranteed legal certainty
Explaining the role local tax compliance plays in successful supply chain management and e-business and how leading global brands are addressing this.
Backing up distributed data
Eliminating the redundant use of bandwidth and storage capacity and application consolidation in the modern data center.
The essential guide to IT transformation
ServiceNow discusses three IT transformations that can help CIOs automate IT services to transform IT and the enterprise
Next gen security for virtualised datacentres
Legacy security solutions are inefficient due to the architectural differences between physical and virtual environments.