Feeds

Bendy flash memory raises prospect of flexible displays

Altered images

Mobile application security vulnerability report

Flexible plastic computer displays have come closer as a result of a successful organic flash memory project led by University of Tokyo researchers.

Flexible flash memory could be used in other relatively large area applications, such as pressure sensors, actuators and electric ink book readers. This contrasts with NAND or NOR flash, which is used in physically small areas. The flexible flash display material has to withstand bending and the Tokyo researchers' material can deform up to a 6mm curve radius without its working being affected.

flexible plastic flash memory sheet

Flexible plastic sheet flash array (from Tech-on).

An organic flash memory transistor (OFMT) has two main components: a conducting floating gate which is wholly enclosed by an insulating gate dielectric material. It is layered onto a substrate material. The Tokyo-led researchers used a plastic sheet substrate made of a PEN (polyethylene naphthalate) resin sheet, on which they built a 676 cell (26 by 26) array. The PEN sheet was not melted by the floating gate production process, which has been a problem for other organic flash memory projects.

Flexible organic flash transistor

Floating gate transistor cross-section (copyright Science/AAAS).

The dielectric is formed of two layers; a self-assembling monolayer (SAM), about 2nm thick, built from phosphoric acid with an alkyl chain, described as n-octadecylphosphonic acid, and a 4nm aluminium oxide layer, forming a 6nm dielectric layer in total.

The floating gate is made of aluminium and its surface is oxidised to form the inner dielectric aluminium oxide layer. An aluminium control gate exists between the PEN and the floating gate transistor. An organic semiconductor made of pentacene is also used.

The Tokyo OFMT needes an applied charge of 6 volts applied to the dielectric to affect the polarity of the floating gate inside it, whereas other organic flash projects require 20 - 30 volts. Reading the setting of the floating gate requires a 1 volt charge. Apparently up to a 1,000 write-erase cycles have been demonstrated.

This is a prototype project which proves a concept. Its charge retention time is around 24 hours, which is not long enough at all, contrasting poorly with the months and years duration of silicon-based NAND flash. However, the researchers think that this can be extended by making the transistors smaller and extending the molecular length of the SAM. ®

Bridging the IT gap between rising business demands and ageing tools

More from The Register

next story
THUD! WD plonks down SIX TERABYTE 'consumer NAS' fatboy
Now that's a LOT of porn or pirated movies. Or, you know, other consumer stuff
EU's top data cops to meet Google, Microsoft et al over 'right to be forgotten'
Plan to hammer out 'coherent' guidelines. Good luck chaps!
US judge: YES, cops or feds so can slurp an ENTIRE Gmail account
Crooks don't have folders labelled 'drug records', opines NY beak
Manic malware Mayhem spreads through Linux, FreeBSD web servers
And how Google could cripple infection rate in a second
FLAPE – the next BIG THING in storage
Find cold data with flash, transmit it from tape
Seagate chances ARM with NAS boxes for the SOHO crowd
There's an Atom-powered offering, too
prev story

Whitepapers

Reducing security risks from open source software
Follow a few strategies and your organization can gain the full benefits of open source and the cloud without compromising the security of your applications.
Consolidation: The Foundation for IT Business Transformation
In this whitepaper learn how effective consolidation of IT and business resources can enable multiple, meaningful business benefits.
Application security programs and practises
Follow a few strategies and your organization can gain the full benefits of open source and the cloud without compromising the security of your applications.
Boost IT visibility and business value
How building a great service catalog relieves pressure points and demonstrates the value of IT service management.
Consolidation: the foundation for IT and business transformation
In this whitepaper learn how effective consolidation of IT and business resources can enable multiple, meaningful business benefits.