Feeds

A Deadlock Holiday

What to do now there's no Moore's Law?

High performance access to file storage

Stob Moore's Law, I need hardly remind a top-notch industry professional like you, states that as the density of silicon circuitry doubles, the probability of you not being able to find some sensibly-priced extra memory to fit your old lappy approaches 1.0.

In recent times it has become generally admitted that, if this well-known observation has not yet quite joined Elvis, it is at the very least fiddling determinedly with the fire exit door. Instead of increasingly quick processors, we are given increasingly cored processors. Whereas it used to take just one running instance of Access 2000 to bring your CPU usage meter to 100%, it now takes two, four or possibly 128.

Once upon a time, all one needed to know about multi-tasking code was how to hang a few lines of badly-written (I speak for myself) assembly language off the timer interrupt. Those were the days, my friend, we thought they'd carry on; yet here I am giving you a whistle-stop tour through the baffling mechanisms designed to help you envisage and write para-multi-threaded applications.

Let us begin with some ancient history.

Co- not Sub-

The great Donald Knuth described the coroutine, a mechanism for writing single-tasked multi-tasking that allowed any programmer to cope with any situation, merely by thinking of everything at once.

Although it has never really taken off as a popular programming construct, it has been very influential, in particular pioneering the important adjective 'lightweight' (subroutines are a lightweight specialisation of coroutines). Nowadays, of course, 'lightweight' is used as a synonym for 'good' throughout comp. sci., yet it still retains a special affinity for the parallel and pseudo-parallel arts.

Threads

A 'thread', abbreviating 'thread of execution', is a lightweight version of the heavier 'process', abbreviating 'process of execution' (as in the phrase 'during the process of execution, the program abruptly died'). Threads save all the tedious mucking about creating state and context demanded by processes, by simply enabling multiple threads to cavort together in the same address space, and with the same resources, like drowning kittens in a bucket of water. Adding cores to the processor improves the threading model by significantly increasing the amount of water available. (Peace: no actual kittens were drowned in the manufacture of that simile.)

In particular, threads suffer badly from 'race conditions'. The race of despised worker threads is made to do boring, low status, 'background' tasks. Meanwhile, the high privilege 'system' threads get to party with the hardware. It's the same the whole world over...

Three old ladies

In order to overcome race conditions, and perhaps to compensate for taking away our beloved 'goto' away from us, top Dutch comp. sci. genius Edsger Dijkstra invented the 'semaphore'. The semaphore is a data structure that allows friendly communication between the threads and tasks of all nations. There are two kinds: the counting semaphore and later, when it has been compiled, the binary semaphore.

The semaphore helped do away with race conditions, and for a while all was sweetness and synchronicity. But it soon became clear that a brand new peril had been introduced: the deadlock.

Today there are at least four well-known kinds of deadlock breeding in the wild:

  • Recursive deadlock, which bloody well happens again and again
  • Deadly mutual embrace deadlock, which is much less fun than it sounds, being a kind of inter-task stalemate
  • Death-of-process deadlock, where the process that claimed the semaphore dies intestate
  • Lady Dedlock, a plaintiff in Jarndyce v. Jarndyce

By way of countering the threat and obtaining a deadlock holiday, it was decided to invent the 'mutex' (or 'mutant' as it is known by posher, system threads).

There is a lot of confusion about the difference between mutexes and semaphores, which frankly I do not see as part of my business to clear up. Instead I will refer you to the conventional explanatory model which is, weirdly, based on the notion of the lockable lavatory (or securable brickhouse, as it is almost known by commoner, worker threads).

The scenario is this: imagine a loo in a restaurant of the dismal kind where you must humiliatingly apply to staff for the key. If there is one lavatory and one key, you have a mutex and a long, fidgety wait. If there are four toilets and four interchangeable keys, you have a counting semaphore. The important thing about a counting semaphore is: it doesn't prevent four threads entering one cubicle together.

This licentious view of synchronisation is disputed by other writers, who say that the difference with mutexes is that, before sitting down, they draw the bolt of ownership across the door.

My own view is: synchronisation primitives will never be understood until somebody goes over their metaphors with gallons of industrial-strength bleach.

High performance access to file storage

Next page: Yet more

More from The Register

next story
Android engineer: We DIDN'T copy Apple OR follow Samsung's orders
Veep testifies for Samsung during Apple patent trial
Windows 8.1, which you probably haven't upgraded to yet, ALREADY OBSOLETE
Pre-Update versions of new Windows version will no longer support patches
OpenSSL Heartbleed: Bloody nose for open-source bleeding hearts
Bloke behind the cockup says not enough people are helping crucial crypto project
Half of Twitter's 'active users' are SILENT STALKERS
Nearly 50% have NEVER tweeted a word
Windows XP still has 27 per cent market share on its deathbed
Windows 7 making some gains on XP Death Day
Internet-of-stuff startup dumps NoSQL for ... SQL?
NoSQL taste great at first but lacks proper nutrients, says startup cloud whiz
Microsoft lobs pre-release Windows Phone 8.1 at devs who dare
App makers can load it before anyone else, but if they do they're stuck with it
US taxman blows Win XP deadline, must now spend millions on custom support
Gov't IT likened to 'a Model T with a lot of things on top of it'
prev story

Whitepapers

Mainstay ROI - Does application security pay?
In this whitepaper learn how you and your enterprise might benefit from better software security.
Five 3D headsets to be won!
We were so impressed by the Durovis Dive headset we’ve asked the company to give some away to Reg readers.
3 Big data security analytics techniques
Applying these Big Data security analytics techniques can help you make your business safer by detecting attacks early, before significant damage is done.
The benefits of software based PBX
Why you should break free from your proprietary PBX and how to leverage your existing server hardware.
Mobile application security study
Download this report to see the alarming realities regarding the sheer number of applications vulnerable to attack, as well as the most common and easily addressable vulnerability errors.