Feeds

IBM shows off Power7 HPC monster

Big Blue unveils big box: Crowd goes wild

Internet Security Threat Report 2014

The water cooling links into the nodes through the front of the chassis, which is to the right in this picture. The chassis weighs a little more than 300 pounds fully loaded. A dozen of these, plus up to 1PB of local storage, can be put into a specially designed rack. This rack delivers 98.3 teraflops of number-crunching power.

Power7 IH Node Hub/Switch Network

The Power7 IH node hub/switch network

The hub/switch at the heart of the Power7 IH node and linking them together is the secret sauce of this machine. Benner would not elaborate much on this network, but did confirm that it borrows ideas from the "Federation" SP hub/switch IBM created. This was for ASCI Blue and other supers running AIX and InfiniBand switches and related InfiniBand technologies Big Blue has been using to link Power5 and Power6 processors to remote I/O drawers for years.

Benner did brag that the hub/switch technology in the IH node "was better than both" Federation and InfiniBand, and said that one of the key distinctions is that it presents a two-level topology to all nodes in the network of machines. Within a node, all of the processors are linked to each other electronically through the motherboard and controlled by the IH node hub/switch.

The optical interconnects mount onto the top of the hub/switch - the squares on the top are actually comprised of a grid of small optical transceivers, with each square delivering 10 Gb/sec of bandwidth, according to Benner. The hub/switch module and the Power7 IH MCMs are put together in IBM's Bromont, Quebec, facility in Canada, which is also where Sony PlayStation 3 and Microsoft Xbox 360 chip packages are manufactured. IBM's East Fishkill, New York, wafer baker is where the Power7 chips and the chips that create the hub/switch are cooked up.

The way the Power7 IH node interconnect works is simple: most of the optical interconnects that come out of the backend of the box are used to link all of the nodes into a supernode, which is four drawers of capacity rated at 32 teraflops. The hub/switch interconnect shown at SC09 can currently scale to 512 supernodes, which works out to 16.4 petaflops. (IBM is going to have to overclock this puppy to 4.88 GHz to hit 20 petaflops, apparently.)

Benner said that the hub/switch module delivered a 1,128 GB/sec - that's bytes, not bits - in aggregate bandwidth. That is 192 GB/sec of bandwidth into each Power7 MCM (what IBM called a host connection), 336 GB/sec of connectivity to the seven other local nodes on the drawer, 240 GB/sec of bandwidth between the nodes in a four-drawer supernode, and 320 GB/sec dedicated to linking nodes to remote nodes. There is another 40 GB/sec of general purpose I/O bandwidth. ®

Secure remote control for conventional and virtual desktops

More from The Register

next story
NSA SOURCE CODE LEAK: Information slurp tools to appear online
Now you can run your own intelligence agency
Azure TITSUP caused by INFINITE LOOP
Fat fingered geo-block kept Aussies in the dark
Yahoo! blames! MONSTER! email! OUTAGE! on! CUT! CABLE! bungle!
Weekend woe for BT as telco struggles to restore service
Cloud unicorns are extinct so DiData cloud mess was YOUR fault
Applications need to be built to handle TITSUP incidents
Stop the IoT revolution! We need to figure out packet sizes first
Researchers test 802.15.4 and find we know nuh-think! about large scale sensor network ops
Turnbull should spare us all airline-magazine-grade cloud hype
Box-hugger is not a dirty word, Minister. Box-huggers make the cloud WORK
SanDisk vows: We'll have a 16TB SSD WHOPPER by 2016
Flash WORM has a serious use for archived photos and videos
Astro-boffins start opening universe simulation data
Got a supercomputer? Want to simulate a universe? Here you go
Microsoft adds video offering to Office 365. Oh NOES, you'll need Adobe Flash
Lovely presentations... but not on your Flash-hating mobe
prev story

Whitepapers

Designing and building an open ITOA architecture
Learn about a new IT data taxonomy defined by the four data sources of IT visibility: wire, machine, agent, and synthetic data sets.
Why CIOs should rethink endpoint data protection in the age of mobility
Assessing trends in data protection, specifically with respect to mobile devices, BYOD, and remote employees.
Getting started with customer-focused identity management
Learn why identity is a fundamental requirement to digital growth, and how without it there is no way to identify and engage customers in a meaningful way.
High Performance for All
While HPC is not new, it has traditionally been seen as a specialist area – is it now geared up to meet more mainstream requirements?
Security and trust: The backbone of doing business over the internet
Explores the current state of website security and the contributions Symantec is making to help organizations protect critical data and build trust with customers.