Feeds

Asustek opens curtain on desktop 'supercomputer'

Eee HPC, anyone?

Beginner's guide to SSL certificates

Taiwanese motherboard and PC maker Asustek is apparently getting ready to jump into the personal supercomputer market with a glorified deskside supercomputer that it has developed in conjunction with graphics chip maker Nvidia and the National Chiao Tung University in Taiwan.

Asustek Computer, known by gearheads for its Asus brand motherboards, is probably best known these days to consumers as the originator of the Linux-based netbook, the Eee PC. The ESC1000 personal super was unveiled at an event in Taipei today, but it is not yet ready for sale. The ESC1000 was mischaracterized in the trade press and blogosphere as a supercomputer.

At best, the ESC1000 can be thought of as a beefed up workstation or a baby supercomputer, even though it may have 1.1 teraflops of single-precision number crunching performance. The ESC1000 will not do nearly as well on double-precision floating point math, and hence, it does not get to be called a supercomputer.

According to the story that broke in Computerworld, the Asus ESC1000 personal supercomputer (or Eee HPC, as El Reg is inclined to call such boxes) is based on a single-socket motherboard (presumably from Asustek) that has a single 3.33 GHz Xeon W3580 processor, one of a family of Nehalem EP server chips that were announced in late March, not one of the Xeon 3400 single-socket parts that came out in early September.

This W3580, running at 3.3 GHz and with a TurboBoost speed of 3.6 GHz, is the fastest of these "real" single-socket server chips. (The Lynnfields are glorified desktop chips and are lacking some memory capacity and I/O bandwidth the proper Xeon 3500s have). As you can see from Intel's spec sheet, this chip was introduced in the third quarter of this year and tops out at 24 GB of DDR3 main memory.

Computerworld seems to be the only trade rag that actually got its hand on a spec sheet for the ESC1000 and says that it will sport three Tesla C1060 graphics co-processors as well as a Quadro FX5800 graphics card.

A report in DigiTimes quotes Asustek sources as saying that the ESC1000 will sell at between NT$480,000 and NT$680,000, which is roughly $14,750 to $20,900 in US dollars.

It is not clear where the 1.1 teraflops performance rating that Computerworld pegged the ESC1000 at came from, but it doesn't make a lot of sense. Each Tesla C1060 has 240 cores running at 1.3 GHz, and each is rated at 933 gigaflops for single-precision math and a mere 78 gigaflops for double-precision math. Assuming the Quadro FX 5800 (which also has 240 cores) is being used as a graphics card and you ignore the math processing on the W3580 since it is running application software and the operating system, the Tesla cards and hence the ESC1000 delivers 2.8 teraflops at single precision and 234 gigaflops at double precision - and that is at peak theoretical performance. This is nice for a workstation, but falls a little shy of supercomputer.

The recent baby supers from Silicon Graphics (here and here), Cray (here and here) are at least machines with switches that bear some architectural resemblance to a modern parallel supercomputer. Interestingly, SGI's Octane III personal supercomputer can be equipped with a two-socket Xeon 5500 cookie sheet server and two Tesla C1060 GPUs for doing math.

But that same chassis can be equipped with ten two-socket Xeon 5500 servers and a Gigabit Ethernet or InfiniBand switch, making it also a baby supercomputer cluster. This Octane machine is rated at 726 gigaflops of double-precision math performance, and it has a base price of $7,995 with one Xeon cookie sheet server and a Gigabit Ethernet switch.

Basically, until the Fermi kickers to the Tesla GPUs come out and offer more reasonable double precision math performance, cramming more x64 chips in the box is something that is going to be appealing to certain kinds of work. For other work, a workstation with a few Teslas tossed in will be just fine. But the two are not interchangeable. That's for sure. ®

Security for virtualized datacentres

More from The Register

next story
It's Big, it's Blue... it's simply FABLESS! IBM's chip-free future
Or why the reversal of globalisation ain't gonna 'appen
'Hmm, why CAN'T I run a water pipe through that rack of media servers?'
Leaving Las Vegas for Armenia kludging and Dubai dune bashing
Microsoft and Dell’s cloud in a box: Instant Azure for the data centre
A less painful way to run Microsoft’s private cloud
Facebook slurps 'paste sites' for STOLEN passwords, sprinkles on hash and salt
Zuck's ad empire DOESN'T see details in plain text. Phew!
CAGE MATCH: Microsoft, Dell open co-located bit barns in Oz
Whole new species of XaaS spawning in the antipodes
AWS pulls desktop-as-a-service from the PC
Support for PCoIP protocol means zero clients can run cloudy desktops
prev story

Whitepapers

Choosing cloud Backup services
Demystify how you can address your data protection needs in your small- to medium-sized business and select the best online backup service to meet your needs.
Forging a new future with identity relationship management
Learn about ForgeRock's next generation IRM platform and how it is designed to empower CEOS's and enterprises to engage with consumers.
Security for virtualized datacentres
Legacy security solutions are inefficient due to the architectural differences between physical and virtual environments.
Reg Reader Research: SaaS based Email and Office Productivity Tools
Read this Reg reader report which provides advice and guidance for SMBs towards the use of SaaS based email and Office productivity tools.
Storage capacity and performance optimization at Mizuno USA
Mizuno USA turn to Tegile storage technology to solve both their SAN and backup issues.