Feeds

ESA proposes ion drive Sun-dodge Mars commsat ploy

Electric rockets to 'hover' above, below ecliptic

Build a business case: developing custom apps

Experts in interplanetary navigation have hit upon a novel scheme for maintaining communications with Mars, should a need to do so eventuate - as in the case of a manned mission to the red planet, for instance.

Diagram of the proposed Mars commsat orbits, looking in the plane of the ecliptic. Credit: Universities of Strathclyde and Glasgow

Forget geosynchronous, powered B-orbits are where it's at for commsats.

The problems in communicating with Mars come when the Sun lies between it and Earth, which happens at intervals of a bit more than two years. Direct radio communications are cut off for weeks.

A natural solution would be to use a communications relay satellite in a suitable orbit, which could carry signals from planet to planet around the sun much as Earth-orbiting satellites carry them around the world.

According to François Bosquillon de Frescheville of the European Space Operations Centre, Darmstadt, it's not as simple as that.

"It has been known for some time that, due to the natural orbital motions of the Sun, Earth and Mars, any communication relay satellite that orbits Mars in a traditional, unpowered Keplerian orbit will, at some point, be blocked by the Sun. That's not good for any astronauts on Mars," he says.

It might be possible to use a relay spacecraft in orbit round the Sun, but this would probably involve serious increases in the time taken for messages to travel back and forth - already some hours when Earth and Mars are far apart.

Thus de Frescheville consulted with a number of top space-navigation engineers at the Universities of Strathclyde and Glasgow. The idea was to see if it might be possible to make use of ion drives, electrically powered rockets which produce very low amounts of thrust (about the same as you feel when you blow on your hand, apparently) but which can keep on doing so for a long time using very small amounts of fuel.

Probe missions using such drives have already been sent out into the solar system, and there is a low-orbiting Earth survey satellite which uses ion propulsion to counteract the minuscule - but nonetheless significant - amounts of atmospheric drag it suffers due to being in the extreme upper reaches of the atmosphere.

"What we have shown is that if you can provide continuous thrust, a pair of spacecraft could 'hover', respectively, over a point leading, and under a point trailing, the Mars orbit, and provide continuous radio communications between Earth and Mars. You would need two relay spacecraft to cover both halves of Mars," says de Frescheville.

"You would get, in effect, full-time communications to almost anywhere on the Red Planet's surface. When the Earth–Mars conjunction season is over, the spacecraft could stop thrusting, save fuel and take up regular, unpowered or near-Keplerian orbits until the following conjunction approaches, and then take up their relay positions again for the next conjunction."

According to de Frescheville and his Scottish colleagues, the relay satellites would only have to switch on their thrusters for 90 days in each 2+ year conjunction cycle, and they would only increase the one-way signal travel time by one minute.

The plan could be very useful in the event of a manned mission to Mars, which was until recently an official goal for NASA - perhaps as soon as 2030. However, at the moment the US space agency is struggling even to assemble a coherent plan for its future manned space efforts, and nobody else has anything more concrete.

However, the relay sats could also help with unmanned missions. According to de Frescheville, similar cunning low-thrust "B-orbit" tricks could be employed in other contexts.

The ion-drive relay sat study was funded by the European Space Agency, and the results were presented this week at the International Astronautical Congress held in Daejeon, South Korea. You can read it here (pdf). ®

Secure remote control for conventional and virtual desktops

More from The Register

next story
Boffins attempt to prove the UNIVERSE IS JUST A HOLOGRAM
Is this the real life? Is this just fantasy?
Our LOHAN spaceplane ballocket Kickstarter climbs through £8000
Through 25 per cent but more is needed: Get your UNIQUE rewards!
China building SUPERSONIC SUBMARINE that travels in a BUBBLE
Shanghai to San Fran in two hours would be a trick, though
LOHAN tunes into ultra long range radio
And verily, Vultures shall speak status unto distant receivers
SpaceX prototype rocket EXPLODES over Texas. 'Tricky' biz, says Elon Musk
No injuries or near injuries. Flight stayed in designated area
Galileo, Galileo! Galileo, Galileo! Galileo fit to go. Magnifico
I'm just a poor boy, nobody loves me. But at least I can find my way with ESA GPS by 2017
EOS, Lockheed to track space junk from Oz
WA facility gets laser-eyes out of the fog
prev story

Whitepapers

Top 10 endpoint backup mistakes
Avoid the ten endpoint backup mistakes to ensure that your critical corporate data is protected and end user productivity is improved.
Implementing global e-invoicing with guaranteed legal certainty
Explaining the role local tax compliance plays in successful supply chain management and e-business and how leading global brands are addressing this.
Backing up distributed data
Eliminating the redundant use of bandwidth and storage capacity and application consolidation in the modern data center.
The essential guide to IT transformation
ServiceNow discusses three IT transformations that can help CIOs automate IT services to transform IT and the enterprise
Next gen security for virtualised datacentres
Legacy security solutions are inefficient due to the architectural differences between physical and virtual environments.