Feeds

Oak Ridge goes gaga for Nvidia GPUs

Fermi chases Cell for HPC dough

Secure remote control for conventional and virtual desktops

Hybrid futures

It would not be at all surprising to see a hybrid architecture for the future Oak Ridge machine that uses PCI-Express 2.0 links to hook Fermi GPUs into Opteron server nodes, just like IBM is using PCI-Express 1.0 links to hook Cell boards into the Opteron nodes with Roadrunner.

Jeff Nichols, associate lab director for computing and computational sciences at Oak Ridge, said in a statement that the Fermi GPUs, which have eight times the double precision floating point performance as the Teslas, at around 500 gigaflops, would enable "substantial scientific breakthroughs that would be impossible without the new technology."

Working with the future Tesla GPU coprocessors and their successors, Oak Ridge is hoping to push up into the exaflops barrier within ten years. Getting to 10 petaflops next year with a parallel super that uses the Fermi GPUs is just a down payment.

The important thing about the Fermi GPUs is that the CUDA programming environment from nVidia supports not just C, but C++ as well. When Fortran compilers can see and dispatch work to the GPUs, the combination of decent double-precision performance and C++ and Fortran support will truly push GPU co-processors into the mainstream. This is exactly what Nvidia, AMD (with its FireStream GPUs), and Intel (with its Larrabee GPUs) are all hoping for.

Cell multiplication

The question now is, what will Big Blue do to counter these moves onto its hybrid supercomputing turf?

Several years back, when the Cell chips were first being commercialized and offered terrible double-precision floating-point performance (like 42 gigaflops versus 460 gigaflops for a two-socket Cell blade), Big Blue's roadmap called for a Cell board with two sockets that could deliver 460 gigaflops of single-precision and 217 gigaflops of double-precision math. We know this blade server as the BladeCenter QS22.

The roadmap also called for a BladeCenter QS2Z, which would have Cell chips that in turn had two Power cores and a whopping 32 vector processors each, using a next-generation memory and interconnection technology; the QS2Z blade would sport 2 teraflops per blade at single precision and 1 teraflops per blade at double precision.

That's about twice the oomph in a Cell chip compared to the forthcoming Fermi GPUs. Oak Ridge knew that, of course, but maybe this future Cell chip never made it out of the concept stage, as it was in early 2007.

IBM is mum on its Cell roadmap plans at this point, but this future Cell chip was slated for delivery in the first half of 2010, more or less concurrent with the Fermi GPU co-processors. ®

Top 5 reasons to deploy VMware with Tegile

More from The Register

next story
NSA SOURCE CODE LEAK: Information slurp tools to appear online
Now you can run your own intelligence agency
Azure TITSUP caused by INFINITE LOOP
Fat fingered geo-block kept Aussies in the dark
Yahoo! blames! MONSTER! email! OUTAGE! on! CUT! CABLE! bungle!
Weekend woe for BT as telco struggles to restore service
Cloud unicorns are extinct so DiData cloud mess was YOUR fault
Applications need to be built to handle TITSUP incidents
BOFH: WHERE did this 'fax-enabled' printer UPGRADE come from?
Don't worry about that cable, it's part of the config
Stop the IoT revolution! We need to figure out packet sizes first
Researchers test 802.15.4 and find we know nuh-think! about large scale sensor network ops
Turnbull should spare us all airline-magazine-grade cloud hype
Box-hugger is not a dirty word, Minister. Box-huggers make the cloud WORK
SanDisk vows: We'll have a 16TB SSD WHOPPER by 2016
Flash WORM has a serious use for archived photos and videos
Astro-boffins start opening universe simulation data
Got a supercomputer? Want to simulate a universe? Here you go
prev story

Whitepapers

Driving business with continuous operational intelligence
Introducing an innovative approach offered by ExtraHop for producing continuous operational intelligence.
Why CIOs should rethink endpoint data protection in the age of mobility
Assessing trends in data protection, specifically with respect to mobile devices, BYOD, and remote employees.
Getting started with customer-focused identity management
Learn why identity is a fundamental requirement to digital growth, and how without it there is no way to identify and engage customers in a meaningful way.
High Performance for All
While HPC is not new, it has traditionally been seen as a specialist area – is it now geared up to meet more mainstream requirements?
Simplify SSL certificate management across the enterprise
Simple steps to take control of SSL across the enterprise, and recommendations for a management platform for full visibility and single-point of control for these Certificates.