Feeds

Scientists lay bare Irish potato famine blight

Phytophthora infestans genome sequenced

Intelligent flash storage arrays

Scientists have successfully sequenced the genome of Phytophthora infestans - the potato blight mould which in the 1840s devasted Irish potato crops, leading to the deaths of one million people.

According to Nature, Phytophthora infestans is a water mould (oomycete) which "causes late blight in potatoes, consumes and rots the leaves and tubers of the plant". It adds: "The mould still afflicts potatoes, tomatoes and related plants, and costs farmers around the world an estimated $6.7bn a year."

Now, though, an international team has "identified a number of genes that might be responsible for the blight's destructive powers - and keys to its undoing".

The researchers discovered that parts of the "unusually large" genome "stood out as being highly variable", or full of "transposons", described as "sequences that make copies of themselves and jump around in the genome". The scientists believe the transposons - comprising a whopping 74 per cent of the genome - allow the mould to quickly evolve to defeat genetic countermeasures intended to stop it in its tracks.

Potato breeder John Bradshaw, of the Scottish Crop Research Institute (SCRI) in Dundee, explained: "At the moment, the breeding strategy has been based on screening the wild relatives [of the potato] from the highlands of Mexico and parts of the Andes such as Bolivia that have resistance."

However, Bradshaw noted: "What has happened is after taking 15 years to incorporate this resistance in a cultivar, it would take Phytophthora infestans only a couple of years to defeat it."

Scientists now hope to pinpoint those Phytophthora infestans genes which are "absolutely required for late blight disease development", as Dr Stephen Whisson of the SCRI put it to the BBC.

He added: "The products from these essential 'disease' genes are then potentially useful to target for resistance in potato breeding programmes, or in development of more specific and environmentally friendly control chemicals."

Bradshaw concluded: "With all this knowledge about how the pathogen attacks the host on the biochemical level, I would hope that some clever plant pathologist would be able to genetically engineer resistance." ®

Intelligent flash storage arrays

More from The Register

next story
MARS NEEDS WOMEN, claims NASA pseudo 'naut: They eat less
'Some might find this idea offensive' boffin admits
Boffins who stare at goats: I do believe they’re SHRINKING
Alpine chamois being squashed by global warming
LOHAN crash lands on CNN
Overflies Die Welt en route to lively US news vid
Comet Siding Spring revealed as flying molehill
Hiding from this space pimple isn't going to do humanity's reputation any good
Experts brand LOHAN's squeaky-clean box
Phytosanitary treatment renders Vulture 2 crate fit for export
No sail: NASA spikes Sunjammer
'Solar sail' demonstrator project binned
Carry On Cosmonaut: Willful Child is a poor taste Star Trek parody
Cringeworthy, crude and crass jokes abound in Steven Erikson’s sci-fi debut
prev story

Whitepapers

Cloud and hybrid-cloud data protection for VMware
Learn how quick and easy it is to configure backups and perform restores for VMware environments.
A strategic approach to identity relationship management
ForgeRock commissioned Forrester to evaluate companies’ IAM practices and requirements when it comes to customer-facing scenarios versus employee-facing ones.
High Performance for All
While HPC is not new, it has traditionally been seen as a specialist area – is it now geared up to meet more mainstream requirements?
Three 1TB solid state scorchers up for grabs
Big SSDs can be expensive but think big and think free because you could be the lucky winner of one of three 1TB Samsung SSD 840 EVO drives that we’re giving away worth over £300 apiece.
Security for virtualized datacentres
Legacy security solutions are inefficient due to the architectural differences between physical and virtual environments.