Feeds

Boffins build World's tiniest 'laser'

Photons in, surface plasmons out

5 things you didn’t know about cloud backup

Scientists in the US have developed what they claim is the world's smallest laser. The device, which is just 44nm in diameter, could pave the way for the development of chips that operate using light rather than electrons.

The device isn't technically a laser, but it works using the same principle. It uses a property of metals in which the density of electrons fluctuates at the edges of their crystal lattices. These fluctuations can be treated as if they are particles. Phsyicists call them 'surface plasmons'.

Zap the surface with a beam of light and the surface plasmons can be made to run along the surface of the metal as if the light itself was moving along it. Since the plasmons can be made to emit light further on, it's as if the light was transmitted by the metal.

Mikhail Noginov, professor of physics at the Center for Materials Research at Norfolk State University in Norfolk, Virginia, used this property to produce a device, known colloquially as a 'spaser', that actively propagates a cascade of surface plasmons in much the same way that a laser amplifies light. The spaser comprises a gold sphere coated with a layer of silica embedded with dye. When a beam of light pulses strike the ball, it pumps surface plasmons across the sphere's surface. The interaction of the plasmons as they bounce around the surface amplifies the effect.

Last month, researchers at Arizona State University in the US and Eindhoven University in the Netherlands created an optical laser that was 100nm in size, but Noginov's is less than half the size of that one. It's also the first spaser.

Size is key. Lasers are limited in size to half the wavelength of the light they use. In the case of visible light, that's 200nm, though you can go smaller as you push into the ultra-violet part of the spectrum. But Noginov's spaser gets the size down well beyond this.

Noginov told the journal Nature he believes spasers can be made to operate down to 1nm, but even at 44nm they're reaching a size that matches the transistors within electron-driven chips.

Optical chips are seen as a potential successor to electronic microcircuits because they're able to operate at clock frequencies more than a thousand times higher than today's silicon chips can manage. The hard part, however, is scaling the laser light sources down to the measurement scales silicon chips use.

Noginov's work shows that surface plasmons rather than laser light may prove to be the basis for high-speed optical processors that operate on a scale to match or exceed the current and future generations of silicon chips. ®

The essential guide to IT transformation

More from The Register

next story
So, Apple won't sell cheap kit? Prepare the iOS garden wall WRECKING BALL
It can throw the low cost race if it looks to the cloud
Samsung Gear S: Quick, LAUNCH IT – before Apple straps on iWatch
Full specs for wrist-mounted device here ... but who'll buy it?
Apple promises to lift Curse of the Drained iPhone 5 Battery
Have you tried turning it off and...? Never mind, here's a replacement
Now that's FIRE WIRE: HP recalls 6 MILLION burn-risk laptop cables
Right in the middle of Burning Mains Man week
HUGE iPAD? Maybe. HUGE ADVERTS? That's for SURE
Noo! Hand not big enough! Don't look at meee!
AMD unveils 'single purpose' graphics card for PC gamers and NO ONE else
Chip maker claims the Radeon R9 285 is 'best in its class'
prev story

Whitepapers

Endpoint data privacy in the cloud is easier than you think
Innovations in encryption and storage resolve issues of data privacy and key requirements for companies to look for in a solution.
Implementing global e-invoicing with guaranteed legal certainty
Explaining the role local tax compliance plays in successful supply chain management and e-business and how leading global brands are addressing this.
Advanced data protection for your virtualized environments
Find a natural fit for optimizing protection for the often resource-constrained data protection process found in virtual environments.
Boost IT visibility and business value
How building a great service catalog relieves pressure points and demonstrates the value of IT service management.
Next gen security for virtualised datacentres
Legacy security solutions are inefficient due to the architectural differences between physical and virtual environments.