Feeds

IBM twists DNA for future chip fab tech

Organic armature for nanotubues, anyone?

Top three mobile application threats

Read the release and you'd think IBM has discovered the Holy Grail of chip making: a way to "pack more power and speed" into microprocessors, while "making them more energy efficient and less expensive to manufacture".

One day, maybe. For now, though, the concept of using DNA to create shapes onto which chip makers can then bind "carbon nanotubes, silicon nanowires or quantum dots" to create processors remains a 'could' rather than a 'can'.

But the IBM breakthrough is a step in that direction, providing a basis for techniques by which such chips may be fabricated rather an innovation in the design of the chips themselves.

What a team from IBM and the California Institute of Technology, led by Paul W K Rothemund, have done is use established chip making techniques, specifically electron-beam lithography and dry oxidative etching, to create anchor points onto which sculpted strands of DNA can then bind precisely and accurately.

IBM DNA chip tech

DNA binding sites, yesterday

The DNA sculptures are created in solution using essentially the same methodology that DNA use to replicate itself within living cells. The molecule's base pairs will only attach to their specific partners - cytosine to guanine, for instance - allowing one strand of the double-helix to provide a template for the second strand.

By sequencing their own run of base pairs, attached to a single strand of viral DNA, and applying a mixture of different short synthetic oligonucleotide strands as mounting points, the team created self-assembling DNA molecules that were folded - a process dubbed by some wag 'DNA Origami' - into specific shapes ready to fit into the lithographed anchor points.

The team said that DNA nanostructures such as squares, triangles and stars can be prepared with dimensions of 100-150nm on an edge and a thickness of the width of the DNA double helix.

The team were able to demonstrate that the folded DNA molecules generally attach to the correct points and with the correct orientation - the technique works reasonably accurately, in other words.

Creating DNA shapes isn't new, but getting them to bid to a silicon substrate in an orderly, controlled way has not proved successful before. Central to the breakthrough were finding the right material on which the DNA shapes would bind and the right conditions to encourage binding and accurate orientation. The upshot is a DNA scaffold onto which active future chip components can be assembled. ®

Combat fraud and increase customer satisfaction

More from The Register

next story
Feast your PUNY eyes on highest resolution phone display EVER
Too much pixel dust for your strained eyeballs to handle
Samsung Galaxy S5 fingerprint scanner hacked in just 4 DAYS
Sammy's newbie cooked slower than iPhone, also costs more to build
Microsoft lobs pre-release Windows Phone 8.1 at devs who dare
App makers can load it before anyone else, but if they do they're stuck with it
Report: Apple seeking to raise iPhone 6 price by a HUNDRED BUCKS
'Well, that 5c experiment didn't go so well – let's try the other direction'
Rounded corners? Pah! Amazon's '3D phone has eye-tracking tech'
Now THAT'S what we call a proper new feature
Zucker punched: Google gobbles Facebook-wooed Titan Aerospace
Up, up and away in my beautiful balloon flying broadband-bot
US mobile firms cave on kill switch, agree to install anti-theft code
Slow and kludgy rollout will protect corporate profits
AMD unveils Godzilla's graphics card – 'the world's fastest, period'
The Radeon R9 295X2: Water-cooled, 5,632 stream processors, 11.5TFLOPS
Sony battery recall as VAIO goes out with a bang, not a whimper
The perils of having Panasonic as a partner
NORKS' own smartmobe pegged as Chinese landfill Android
Fake kit in the hermit kingdom? That's just Kim Jong-un-believable!
prev story

Whitepapers

Designing a defence for mobile apps
In this whitepaper learn the various considerations for defending mobile applications; from the mobile application architecture itself to the myriad testing technologies needed to properly assess mobile applications risk.
3 Big data security analytics techniques
Applying these Big Data security analytics techniques can help you make your business safer by detecting attacks early, before significant damage is done.
Five 3D headsets to be won!
We were so impressed by the Durovis Dive headset we’ve asked the company to give some away to Reg readers.
The benefits of software based PBX
Why you should break free from your proprietary PBX and how to leverage your existing server hardware.
Securing web applications made simple and scalable
In this whitepaper learn how automated security testing can provide a simple and scalable way to protect your web applications.