The Register® — Biting the hand that feeds IT

Feeds

Toshiba hopes for 3D flash chip within three years

Very small drill needed for 16 layer hole

5 ways to reduce advertising network latency

Toshiba has developed a 3-dimensional NAND flash chip using 2 bit multi-level cell technology.

The basic idea is to stack layers of flash memory atop one another to build a higher capacity chip more cheaply than by integrating the same number of cells into a single layer chip. The stacked chip would also occupy a smaller area than a single layer chip with the same capacity.

Matrix Semiconductor was working with this technology in 2001. SanDisk bought Matrix in 2005. Toshiba commenced its own 3D memory developments in 2007. SanDisk and Toshiba, who have joint NAND manufacturing operations, got together in 2008 to jointly develop 3D memory further and this development is still ongoing.

Tech On reports that Toshiba calls its 3D implementation P-BiCS (Pipe-shaped Bit Cost Scalable) and has a 16-layer, 32Gbit prototype chip, built using 60nm process technology. The chip's area is 10.11 x 15.52mm, and the actual NAND cells are smaller than those to be found in the 32nm process technology flash chips coming from Toshiba this year.

One problem area has been the construction of holes through the layers. In a previous implementation an insulating film on the walls of this hole was damaged during the manufacturing process. Toshiba has reduced the tunnel wall insulation damage by making the insulating film from Silicon Nitride (SiN) rather than Silicon Dioxide (SiO2).

Currently the hole can be created through eight layers. The 16-layer prototype is in fact two stacked 8-layer units. Hideaki Aochi, the chief specialist in Toshiba's Advanced Memory Device Technology Department, said: "One more breakthrough is required in the processes of stacking cells and opening the through-hole to lower the cost." That might involve creating a 16-layer hole.

In the previous chip, cells were connected in a linear fashion. The new chip has a U-shaped cell string to enable the multi-level cell (MLC) operation. Certain logic operations have also been moved in the new implementation from the lower part of the cell string to the upper part.

Jim Handy of Objective Analysis, confirmed the area advantage of this 3D prototype: "If you used a 66nm process to make a standard MLC NAND it would have a die size almost four times as large at 600sq mm vs the 156sq mm of the Toshiba chip. Even with 4-bit MLC, the standard NAND part would be twice the size of Toshiba's new part."

Handy reckons Toshiba's technology is cool: "(Toshiba) understood some of the limitations of the prior chip and came up with ingeniously simple solutions to them. Making a U-shaped line improved the nitride's quality to something that could support 2-bit MLC. Moving the logic to the top from the substrate (which is far more conventional) gave them faster access since metal can now be used for the source lines rather than a diffusion layer."

He believes that production 3D memory chips could appear in three years time, as Toshiba hopes. ®

Email delivery: Hate phishing emails? You'll love DMARC

Whitepapers

Microsoft’s Cloud OS
System Center Virtual Machine manager and how this product allows the level of virtualization abstraction to move from individual physical computers and clusters to unifying the whole Data Centre as an abstraction layer.
5 ways to prepare your advertising infrastructure for disaster
Being prepared allows your brand to greatly improve your advertising infrastructure performance and reliability that, in the end, will boost confidence in your brand.
Reg Reader Research: SaaS based Email and Office Productivity Tools
Read this Reg reader report which provides advice and guidance for SMBs towards the use of SaaS based email and Office productivity tools.
Avere FXT with FlashMove and FlashMirror
This ESG Lab validation report documents hands-on testing of the Avere FXT Series Edge Filer with the AOS 3.0 operating environment.
Email delivery: Hate phishing emails? You'll love DMARC
DMARC has been created as a standard to help properly authenticate your sends and monitor and report phishers that are trying to send from your name..

More from The Register

next story
Chaos Computer Club: iPhone 5S finger-sniffer COMPROMISED
Anyone can touch your phone and make it give up its all
Travel much? DON'T buy a Samsung Galaxy Note 3
Sammy region-locks the latest version of its popular poke-with-a-stylus mobe
EU move to standardise phone chargers is bad news for Apple
Faster than a speeding glacier but still more powerful than Lightning
Full Steam Ahead: Valve unwraps plans for gaming hardware
Seeding 300 beta machines to members with enough friends
Fandroids at pranksters' mercy: Android remote password reset now live
Google says 'don't be evil', but it never said we couldn't be mischievous
Samsung unveils Galaxy Note 3: HOT CURVES – the 'gold grill' of smartphone bling
Flat screens are so 20th century, insist marketing bods
DEAD STEVE JOBS kills Apple bounce patent from BEYOND THE GRAVE
Biz tyrant's iPhone bragging ruled prior art
prev story