Feeds

US team create carbon nanotube ultra-memory

Chips to last a billion years, hold trillion bits/sq in

Internet Security Threat Report 2014

US researchers have demonstrated a form of nanotube archival memory that can store a memory bit for a billion years, and has a theoretical trillion bits/square inch density.

The researchers at the U.S. Department of Energy's Lawrence Berkeley National Laboratory (Berkeley Lab) and the University of California (UC) Berkeley were led by physicist Alex Zettl. They built a prototype device based on a nanoscale iron particle, about 1/50,000th the width of a human hair, moving along a carbon nanotube like a shuttle.

The nano-structure was created in a single step by pyrolysis of ferrocene in argon at 1,000 degreees C. The created nanotube elements are dispersed in isopropanol ultrasonically and deposited on a substrate with electrical contacts applied to the ends of the nanotube. The researchers say these steps are compatible with common semiconductor manufacturing techniques.

By applying an electric current, the iron particle shuttle could be made to move inside the nanotube either away from or towards the current source. When the current was turned off the particle was, as it were, frozen in position. By applying the current in a timed pulse the particle could be made to move a fixed 3nm distance in steps. The speed of movement could be altered by varying the applied bias voltage.

The researchers say that placing the shuttle either side of the mid-point along the length of the nanotube can constitute a digital one or zero. A transmission electron microscope showed the shuttle moving - there is a video showing this accessible here. In a practical device the shuttle position could be read via detecting the axial electrical resistance of the nanotube by small voltage pulses. This is sensitive to the physical location of the enclosed nanoparticle shuttle and the pulses do not alter the state of the shuttle.

Calculations were made based on how far the shuttle would have to move at room temperature, with no applied voltage, before its position altered sufficiently for the data value to be changed, and how long this would take. The researchers calculated it would take 3.3 × 10 to the power 17 seconds and conclude that they have demonstrated the feasibility of an archival storage memory element with a billion year lifespan.

Other calculations suggest a complete archival chip could store a trillion bits in a square inch in this way. Fascinating stuff, but any practical usage is still many, many years away.

The research is described in a publication called Nano Letters, in a paper called Nanoscale Reversible Mass Transport for Archival Memory. ®

Internet Security Threat Report 2014

More from The Register

next story
Hi-torque tank engines: EXTREME car hacking with The Register
Bentley found in a hedge gets WW2 lump insertion
What's MISSING on Amazon Fire Phone... and why it WON'T set the world alight
You fought hard and you saved and earned. But all of it's going to burn...
Trousers down for six of the best affordable Androids
Stylish Googlephones for not-so-deep pockets
Download alert: Nearly ALL top 100 Android, iOS paid apps hacked
Attack of the Clones? Yeah, but much, much scarier – report
Fujitsu CTO: We'll be 3D-printing tech execs in 15 years
Fleshy techie disses network neutrality, helmet-less motorcyclists
prev story

Whitepapers

Driving business with continuous operational intelligence
Introducing an innovative approach offered by ExtraHop for producing continuous operational intelligence.
Why CIOs should rethink endpoint data protection in the age of mobility
Assessing trends in data protection, specifically with respect to mobile devices, BYOD, and remote employees.
Forging a new future with identity relationship management
Learn about ForgeRock's next generation IRM platform and how it is designed to empower CEOS's and enterprises to engage with consumers.
Reg Reader Research: SaaS based Email and Office Productivity Tools
Read this Reg reader report which provides advice and guidance for SMBs towards the use of SaaS based email and Office productivity tools.
Mitigating web security risk with SSL certificates
Web-based systems are essential tools for running business processes and delivering services to customers.