Boffins build super-accurate atomic clock

300 million years without winding

Beginner's guide to SSL certificates

The atomic clocks currently used for regulating international time zones are great and all, but who has the time every few million years to adjust them?

Fortunately, physicists in the US have figured out how to control seemingly "forbidden" collisions between neutral strontium atoms to make a clock that neither loses nor gains a second in more than 300 million years.

The research was done by the folks at JILA, one of the country's leading physical science research institutes, jointly run by the University of Colorado and the National Institute of Standards and Technology. Their latest findings are described in the April issue of the journal Science.

Like other atomic timepieces, JILA's strontium-based clock measures time by harnessing the natural - and conveniently consistent - vibrations of atoms.

JILA's clock - which it's been improving on for the last couple of years - traps a whole bunch of super-cooled strontium atoms in an optical grid of overlapping infrared beams. Strontium's "ticks" are measured by bathing the atoms in light from a separate red laser tuned to a frequency that prompts a uniform jump between two energy levels.

Using a whole bunch of atoms to measure the ticks increases the precision of the clock's signal, but the atoms tend to want to mingle - which messes with their internal energy states and minutely reduces overall accuracy.

Strontium belongs to a class of atoms called fermions. According to quantum physics, fermions can't occupy the same energy state and location at the same time. Therefore fermions in identical energy states can't collide. The difficulty is, in practice with JILA's clock, they do.

Scientists at JILA have now figured out that all this laser-to-atom action in the clock introduces a very small degree of inconsistency in the atoms. And once fermions are even slightly distinguishable, collisions can occur.

JILA's latest clock suppresses the atomic mayhem by reducing the strontium atoms' temperature to a few millionths of a degree closer to absolute zero and increasing the grid depth. The difference improves their previous version, which they introduced in 2008 by 50 per cent - resulting in a very impressive feat of not needing significant winding for more than 300 million years.

Ultra-precise clocks like this are actually quite useful for applications like improving the synchronization of telecom networks and deep-space communications. Also, casually mentioning that you made a clock that's accurate to a second for 300 million years is almost guaranteed to get you laid. ®

Internet Security Threat Report 2014

More from The Register

next story
GRAV WAVE DRAMA: 'Big Bang echo' may have been grit on the scanner – boffins
Exit Planet Dust on faster-than-light expansion of universe
SpaceX Dragon cargo truck flies 3D printer to ISS: Clawdown in 3, 2...
Craft berths at space station with supplies, experiments, toys
That glass of water you just drank? It was OLDER than the SUN
One MEELLION years older. Some of it anyway
Big dinosaur wowed females with its ENORMOUS HOOTER
That's right, Doris, I've got biggest snout in the prehistoric world
Japanese volcano eruption reportedly leaves 31 people presumed dead
Hopes fade of finding survivors on Mount Ontake
Relive the death of Earth over and over again in Extinction Game
Apocalypse now, and tomorrow, and the next day, and the day after that ...
prev story


Providing a secure and efficient Helpdesk
A single remote control platform for user support is be key to providing an efficient helpdesk. Retain full control over the way in which screen and keystroke data is transmitted.
Intelligent flash storage arrays
Tegile Intelligent Storage Arrays with IntelliFlash helps IT boost storage utilization and effciency while delivering unmatched storage savings and performance.
Beginner's guide to SSL certificates
De-mystify the technology involved and give you the information you need to make the best decision when considering your online security options.
Security for virtualized datacentres
Legacy security solutions are inefficient due to the architectural differences between physical and virtual environments.
Secure remote control for conventional and virtual desktops
Balancing user privacy and privileged access, in accordance with compliance frameworks and legislation. Evaluating any potential remote control choice.