Feeds

Boffins build super-accurate atomic clock

300 million years without winding

Top 5 reasons to deploy VMware with Tegile

The atomic clocks currently used for regulating international time zones are great and all, but who has the time every few million years to adjust them?

Fortunately, physicists in the US have figured out how to control seemingly "forbidden" collisions between neutral strontium atoms to make a clock that neither loses nor gains a second in more than 300 million years.

The research was done by the folks at JILA, one of the country's leading physical science research institutes, jointly run by the University of Colorado and the National Institute of Standards and Technology. Their latest findings are described in the April issue of the journal Science.

Like other atomic timepieces, JILA's strontium-based clock measures time by harnessing the natural - and conveniently consistent - vibrations of atoms.

JILA's clock - which it's been improving on for the last couple of years - traps a whole bunch of super-cooled strontium atoms in an optical grid of overlapping infrared beams. Strontium's "ticks" are measured by bathing the atoms in light from a separate red laser tuned to a frequency that prompts a uniform jump between two energy levels.

Using a whole bunch of atoms to measure the ticks increases the precision of the clock's signal, but the atoms tend to want to mingle - which messes with their internal energy states and minutely reduces overall accuracy.

Strontium belongs to a class of atoms called fermions. According to quantum physics, fermions can't occupy the same energy state and location at the same time. Therefore fermions in identical energy states can't collide. The difficulty is, in practice with JILA's clock, they do.

Scientists at JILA have now figured out that all this laser-to-atom action in the clock introduces a very small degree of inconsistency in the atoms. And once fermions are even slightly distinguishable, collisions can occur.

JILA's latest clock suppresses the atomic mayhem by reducing the strontium atoms' temperature to a few millionths of a degree closer to absolute zero and increasing the grid depth. The difference improves their previous version, which they introduced in 2008 by 50 per cent - resulting in a very impressive feat of not needing significant winding for more than 300 million years.

Ultra-precise clocks like this are actually quite useful for applications like improving the synchronization of telecom networks and deep-space communications. Also, casually mentioning that you made a clock that's accurate to a second for 300 million years is almost guaranteed to get you laid. ®

Beginner's guide to SSL certificates

More from The Register

next story
PORTAL TO ELSEWHERE scried in small galaxy far, far away
Supermassive black hole dominates titchy star formation
Boffins say they've got Lithium batteries the wrong way around
Surprises at the nano-scale mean our ideas about how they charge could be all wrong
Edge Research Lab to tackle chilly LOHAN's final test flight
Our US allies to probe potential Vulture 2 servo freeze
Europe prepares to INVADE comet: Rosetta landing site chosen
No word yet on whether backup site is labelled 'K'
Cracked it - Vulture 2 power podule fires servos for 4 HOURS
Pixhawk avionics juice issue sorted, onwards to Spaceport America
Archaeologists and robots on hunt for more Antikythera pieces
How much of the world's oldest computer can they find?
prev story

Whitepapers

Secure remote control for conventional and virtual desktops
Balancing user privacy and privileged access, in accordance with compliance frameworks and legislation. Evaluating any potential remote control choice.
Intelligent flash storage arrays
Tegile Intelligent Storage Arrays with IntelliFlash helps IT boost storage utilization and effciency while delivering unmatched storage savings and performance.
WIN a very cool portable ZX Spectrum
Win a one-off portable Spectrum built by legendary hardware hacker Ben Heck
High Performance for All
While HPC is not new, it has traditionally been seen as a specialist area – is it now geared up to meet more mainstream requirements?
Beginner's guide to SSL certificates
De-mystify the technology involved and give you the information you need to make the best decision when considering your online security options.