Feeds

Symmetrix and the death of monolithic arrays

V-Max is modular through and through

Gartner critical capabilities for enterprise endpoint backup

EMC's Symmetrix V-Max, announced today, represents the death of monolithic storage arrays and the rise of combined scale-up/scale-out modular arrays built from commodity components tied together with ASICs, very clever software and geographical distance cluster interconnects. It's also a tribute to 3PAR's T-Class InServ design and solidifies a trend to modularity seen already with the DMX-4.

The basic V-Max building block is a pair of quad-core Xeon 2.3GHx (5400) processors, 16 host and 16 disk enclosure ports (8 each per Xeon quad-core), 128GB of global memory, an EMC ASIC to handle the global memory access, and the RapidIO interconnect endpoints.

EMC can now ride the Intel CPU evolution curve and we can look forward to Nehalem-based V-Max engines, roughly twice as powerful as the existing ones at the quad-core level. (V-Max Plus anybody?) These should plug in and play with the existing 5400 Xeon-based ones providing both a scale-up upgrade path and investment protection.

We know that V-Max can scale to 8 V-Max engines with the current release and that FAST software is coming to provide automated data movement between the V-Max storage tiers (flash disk - Fibre Channel disk - SATA disk).

Barry Burke, EMC's senior director and chief strategy officer for the Symmetrix Product Group, says that EMC is developing software to leverage flash drives as something more than just another tier of storage, but doesn't explain what that means. Certainly, in the future, we might see 2-tier V-Max arrays; ones with just a fast flash tier and a bulk storage SATA tier.

V-Max memory considerations

The 8-engine V-Max has eight sets of storage enclosures behind the engines combined into a single logical pool of storage capacity, with the storage processors enjoying the use of global memory made up from each engine's own 128GB local memory, and presumably combined and kept coherent by the EMC ASICs. Any access to memory by a V-Max processor is treated as a local access, and remote accesses are virtualised to seem local.

As well as enabling two kinds of memory access, one local and the other remote to a peer V-Max engine, the architectural design allows for a third kind of memory access and linkage. Burke describes it: "the Architecture allows for a third dimension of interconnect – a connection between different V-Max systems. This interconnect would not necessarily expand to share memory across all the nodes in two (or more) separate V-Max arrays, but it would allow multiple V-Max arrays to perform high-speed data transfers and even redirected I/O requests between different Symmetrix V-Max 'virtual partitions.'"

"This capability of the Architecture will be leveraged in the future to 'federate' different generations of V-Max arrays in order to scale to even greater capacities and performance, and will also be used to simplify technology refreshes. In the future, you’ll be able to “federate” a new V-Max with the one on your floor and non-disruptively relocate workloads, data and host I/O ports."

It seems to me that V-Max virtual partitions could have different characteristics. Data in a partition might be single instanced and compressed Celerra-style, for example.

InfiniBand rejected

V-Max uses an interconnect new to most of us - RapidIO. Burke states: "the first generation of the Symmetrix V-Max uses two active-active, non-blocking, serial RapidIO v1.3-compliant private networks as the inter-node Virtual Matrix Interconnect, which supports up to 2.5GB/sec full-duplex data transfer per connection – each 'director' has 2, and thus each 'engine' has 4 connections in the first-gen V-Max."

Why was RapidIO used and not InfiniBand? After all, RapidIO has evolved from bus technology whereas InfiniBand is already used in processor clusters and storage clusters (Isilon). Sun has just chosen Mellanox' 40Gbit/s InfiniBand ConnectX adapters and InfiniScale IV switch silicon for its new line of Sun Blade modular systems and Sun Datacenter Switches.

Secure remote control for conventional and virtual desktops

More from The Register

next story
The Return of BSOD: Does ANYONE trust Microsoft patches?
Sysadmins, you're either fighting fires or seen as incompetents now
Microsoft: Azure isn't ready for biz-critical apps … yet
Microsoft will move its own IT to the cloud to avoid $200m server bill
Oracle reveals 32-core, 10 BEEELLION-transistor SPARC M7
New chip scales to 1024 cores, 8192 threads 64 TB RAM, at speeds over 3.6GHz
US regulators OK sale of IBM's x86 server biz to Lenovo
Now all that remains is for gov't offices to ban the boxes
Object storage bods Exablox: RAID is dead, baby. RAID is dead
Bring your own disks to its object appliances
Nimble's latest mutants GORGE themselves on unlucky forerunners
Crossing Sandy Bridges without stopping for breath
prev story

Whitepapers

Implementing global e-invoicing with guaranteed legal certainty
Explaining the role local tax compliance plays in successful supply chain management and e-business and how leading global brands are addressing this.
Top 10 endpoint backup mistakes
Avoid the ten endpoint backup mistakes to ensure that your critical corporate data is protected and end user productivity is improved.
Top 8 considerations to enable and simplify mobility
In this whitepaper learn how to successfully add mobile capabilities simply and cost effectively.
Rethinking backup and recovery in the modern data center
Combining intelligence, operational analytics, and automation to enable efficient, data-driven IT organizations using the HP ABR approach.
Reg Reader Research: SaaS based Email and Office Productivity Tools
Read this Reg reader report which provides advice and guidance for SMBs towards the use of SaaS based email and Office productivity tools.