Feeds

DARPA gives Cal Tech boffin $6m 'to save Moore's Law'

Invulno-chips that can 'self-modify' in microseconds

Choosing a cloud hosting partner with confidence

Maverick Pentagon deathboffins aim to prevent processing progress grinding to a crunching halt in the next few years by developing "self healing" integrated circuits, able to repair themselves in the event of damage or failed components.

The idea here is that as more and more teenier and teenier transistors are packed into an integrated circuit, particularly when turning the overclock knob up at the same time, it becomes extremely hard to make sure that there will be none with flaws.

"As transistors approach atomic dimensions and run at very high frequencies, even very fine-scale variations within seemingly identical transistors can make a large difference in performance," says Dr Ali Hajimiri of Cal Tech. "Some circuits may run faster, some slower. Some may actually fail."

And that simply won't do, because it means that Moore's Law - on which the entire fabric of the universe has now become dependent - might stop working. Quite apart from devastating the underpinnings of the IT industry, and even more those of IT journalism, this would have other consequences. In particular, the US war machine's continual push for faster, better, madder electronics could be stymied (let's not forget, after all, that integrated circuits were first developed for use in missiles).

Our old friends, the paradigm-punishing boffinry iconoclasts of DARPA, aren't having any of that. That's why they've just hired Cal Tech's Hajimiri to sort things out, for $6m. According to the Cal Tech statement:

DARPA's Self-HEALing mixed-signal Integrated Circuits, or HEALICs, program is designed to enable the continuation of the Moore's scaling law, which predicts an exponential increase in the number of transistors that can be placed on an integrated circuit (one that performs multiple functions), in the face of inevitable imperfections in those transistors.

Hajimiri's solution is to employ sensors that can detect the conditions within a circuit - and determine, for example, that a particular transistor is not working up to par, or at all - along with actuators that can then modify the system. For example, the actuators could swap functional transistors for failing ones, or add "helper" transistors that would boost the functional capability of a transistor running at sub-optimal speeds. All of these modifications ideally would be made within thousandths to millionths of a second, effectively fixing failing circuits on the fly.

"In a few years self-healing circuits will continue Moore's scaling law by making integrated circuits resemble living organisms in their ability to self-heal and adjust to changes in the environment," Hajimiri says.

Nice try, lads. Saving Moore's Law - good one. But it's quite plain that you're creating indestructible computers which can't be damaged or wear out, and which can heal themselves - probably even modify, redesign and improve themselves - millions of times a second.

I think we all know where this is going. ®

Beginner's guide to SSL certificates

More from The Register

next story
Ex-US Navy fighter pilot MIT prof: Drones beat humans - I should know
'Missy' Cummings on UAVs, smartcars and dying from boredom
Don't wait for that big iPad, order a NEXUS 9 instead, industry little bird says
Google said to debut next big slab, Android L ahead of Apple event
Xperia Z3: Crikey, Sony – ANOTHER flagship phondleslab?
The Fourth Amendment... and it IS better
Netscape Navigator - the browser that started it all - turns 20
It was 20 years ago today, Marc Andreeesen taught the band to play
A drone of one's own: Reg buyers' guide for UAV fanciers
Hardware: Check. Software: Huh? Licence: Licence...?
The Apple launch AS IT HAPPENED: Totally SERIOUS coverage, not for haters
Fandroids, Windows Phone fringe-oids – you wouldn't understand
Apple SILENCES Bose, YANKS headphones from stores
The, er, Beats go on after noise-cancelling spat
Here's your chance to buy an ancient, working APPLE ONE
Warning: Likely to cost a lot even for a Mac
prev story

Whitepapers

Forging a new future with identity relationship management
Learn about ForgeRock's next generation IRM platform and how it is designed to empower CEOS's and enterprises to engage with consumers.
Cloud and hybrid-cloud data protection for VMware
Learn how quick and easy it is to configure backups and perform restores for VMware environments.
Three 1TB solid state scorchers up for grabs
Big SSDs can be expensive but think big and think free because you could be the lucky winner of one of three 1TB Samsung SSD 840 EVO drives that we’re giving away worth over £300 apiece.
Reg Reader Research: SaaS based Email and Office Productivity Tools
Read this Reg reader report which provides advice and guidance for SMBs towards the use of SaaS based email and Office productivity tools.
Security for virtualized datacentres
Legacy security solutions are inefficient due to the architectural differences between physical and virtual environments.