Feeds

Boffins build 'slow glass' light-trapping nanodoughnut

Exciton in tight ring = fast photonic computing?

Bridging the IT gap between rising business demands and ageing tools

Warwickshire boffins believe they may be on the track of science-fiction "slow glass", through which light might take a long time to travel. The scientists think that such light-storing materials might be fashioned using excitons mounted inside unfeasibly tiny "quantum doughnuts".

In essence it seems that an exciton is an electron which has been jazzed up a bit energy-wise by absorbing a photon of light. The idea is that if you could prevent such excitons immediately re-emitting their photons and so turning back into electrons at once as they normally do, you could effectively store, or "freeze" light.

Such technology was imagined by renowned sci-fi scribe Robert Shaw in his novel Other Days, Other Eyes and its precursor works. "Slow Glass", through which light would take hours, days or years to travel, was used for many things in the book: stored daylight offered free lighting, for instance. (The omnipresence of slow-glass lights also delivered an equivalent of a CCTV panopticon, as images of anything happening within view of a pane of slow glass would later be visible on its other side.)

According to Warwickshire physicists Andrea Fischer and Rudolf A. Roemer, excitons - properly handled - could offer something on these lines, and might also be extremely handy in light-based (photonic) computing. With electronics approaching its limits, many researchers believe that photonics could deliver the next wave of big performance increases.

Normally an exciton, fairly uselessly, simply releases its photon almost at once. But Fischer and Roemer, trying out notions one day in the lab, decided to try slotting excitons into some quantum nano-doughnuts they had lying around.

Such "Aharonov-Bohm nano rings" were originally created as a by-product of manufacturing comparatively humdrum quantum dots. It seems that sometimes even the most skilful boffin, knocking out a batch of quantodots in a hurry, will inadvertently splash the material onto the receiving surface too hard and make a doughnut rather than a contiguous nano-blob dot.

Fischer and Roemer decided to slot an exciton into the middle of such a nano-ring, in the 10-100 nm size range. That in itself - as one would naturally expect - achieved nothing. But the addition of "a combination of magnetic and electric fields" makes it possible to trap the slippery exciton in one's unfeasibly minuscule quantum ring, at which point it is entirely at one's bidding. The exciton can then be made to hold onto its photon, "freezing" it in place, or collapse back in electronhood and emit the light on command.

"This has significant implications for the development of light based computing," says Roemer.

Though other scientists have slowed light down using various techniques which might also be significant in the possible future wave of photonic IT, Roemer and Fischer consider that theirs is the first which properly locks a photon down for release on demand.

The Warwickshire brainboxes, allied with others, publish their paper Exciton storage in a nanoscale Aharonov-Bohm ring with electric field tuning here (subscription required). ®

Mobile application security vulnerability report

More from The Register

next story
Bad back? Show some spine and stop popping paracetamol
Study finds common pain-killer doesn't reduce pain or shorten recovery
Malaysian Airlines flight MH17 claimed lives of HIV/AIDS cure scientists
Researchers, advocates, health workers among those on shot-down plane
Mwa-ha-ha-ha! Eccentric billionaire Musk gets his PRIVATE SPACEPORT
In the Lone Star State, perhaps appropriately enough
World Solar Challenge contender claims new speed record
One charge sees Sunswift travel 500kms at over 100 km/h
SMELL YOU LATER, LOSERS – Dumbo tells rats, dogs... humans
Junk in the trunk? That's what people have
All those new '5G standards'? Here's the science they rely on
Radio professor tells us how wireless will get faster in the real world
The Sun took a day off last week and made NO sunspots
Someone needs to get that lazy star cooking again before things get cold around here
prev story

Whitepapers

Designing a Defense for Mobile Applications
Learn about the various considerations for defending mobile applications - from the application architecture itself to the myriad testing technologies.
How modern custom applications can spur business growth
Learn how to create, deploy and manage custom applications without consuming or expanding the need for scarce, expensive IT resources.
Reducing security risks from open source software
Follow a few strategies and your organization can gain the full benefits of open source and the cloud without compromising the security of your applications.
Boost IT visibility and business value
How building a great service catalog relieves pressure points and demonstrates the value of IT service management.
Consolidation: the foundation for IT and business transformation
In this whitepaper learn how effective consolidation of IT and business resources can enable multiple, meaningful business benefits.