Feeds

Terabit Ethernet possibilities

Breakthrough switching speed

Secure remote control for conventional and virtual desktops

Researchers think they have opened the door to terabit per second Ethernet links using multiplexed 10Gbit/s data streams and small chalcogenide demux chips to demultiplex the 10 gig streams.

An optical network cable can have lasers pumping multiple 10Gbit/s into different colours of the light spectrum and squirting them in parallel down the cable. The receiving and recombination of these streams is a problem at output rates higher than 40Gbits according to a research paper (pdf), 'Breakthrough switching speed with an all-optical chalcogenide glass chip: 640 Gbit/s demultiplexing', published in Optics Express, Vol. 17, Issue 4, on February 16th.

The paper, by a group of researchers from Australia, China and Denmark, describes how injecting multiple 10gig data streams into optical cables is not a problem using existing optical technology (electro-optic modulator per stream) and optical time-division multiplexing (OTDM). The obstacle has been recombining those separate data streams at the end of the link and doing it fast enough.

Until now the re-combination has been carried out using photo-detectors that can operate up to 40 Gbit/s or so. That limits us to just four 10gig streams. Achieving higher data rates this way means we have to send more parallel data streams down the cable and demultiplex - switch or recombine them - into one data stream faster still. Japanese researchers using optical switching reached an impressive upper limit of 640Gbit/s in 1998.

Each second, the Japanese resarchers' kit performed this task; 640 billion bits of data, spread across 64 separate 10Gbit/s data streams, were received, demultiplexed, and sent on in the right order. The demultiplexer has a 640 billionth of a second to deal with each bit. The photonic devices used needed wave guides, one per data stream, to carry out the demultiplexing and these were tens of metres long, making the technology quite impractical.

This latest reseach uses wave guides just 5cm long by making them from chalcogenide glass chips with switching speeds measured in femto seconds, a billionth of a millionth of a second, or a quadrillionth.

Chalcogens are a group of elements in the periodic table of elements that have a particular electron configuration determining their behaviour in chemical reactions. The group consists of oxygen, sulfur, selenium, tellurium, polonium and ununhexium. Sulfide, selenide and telluride are termed the heavier chalgogens and compounds of them with other elements are called chalcogenides.

Australia's Centre for Ultrahigh bandwidth Devices for Optical Systems (CUDOS) worked with high-speed optical networking researchers at the Technical University of Denmark to develop the chalcogenide chips needed. The particular material chosen was arsenic trisulfide (AS2S3) which has a very high non-linearity property, meaning that the light pulses in an incoming data stream can be detected in a very much shorter length of wave guide material.

The researchers' paper states: "the high non-linearity enables compact components with the potential for monolithic integration of multiple functionalities on a single-chip. ... The size reduction to the cm range is the critical step that will allow the fabrication of complex multichannel devices with a high degree of functionality on a single chip operating at Tbit/s rates at practical power levels. ... these results confirm the enormous potential of chalcogenide-based waveguides for ultrafast optical signal processing."

They believe their technology can be extended to demultiplex 100 10Gbit/s data streams and so achieve a terabit Ethernet capability. This would require a monolithic chip with separate waveguides per data stream. Commercialisation of such technology is, of course, if it takes place at all, many years away. ®

Remote control for virtualized desktops

More from The Register

next story
Azure TITSUP caused by INFINITE LOOP
Fat fingered geo-block kept Aussies in the dark
You think the CLOUD's insecure? It's BETTER than UK.GOV's DATA CENTRES
We don't even know where some of them ARE – Maude
729 teraflops, 71,000-core Super cost just US$5,500 to build
Cloud doubters, this isn't going to be your best day
Want to STUFF Facebook with blatant ADVERTISING? Fine! But you must PAY
Pony up or push off, Zuck tells social marketeers
Oi, Europe! Tell US feds to GTFO of our servers, say Microsoft and pals
By writing a really angry letter about how it's harming our cloud business, ta
SAVE ME, NASA system builder, from my DEAD WORKSTATION
Anal-retentive hardware nerd in paws-on workstation crisis
Astro-boffins start opening universe simulation data
Got a supercomputer? Want to simulate a universe? Here you go
prev story

Whitepapers

Choosing cloud Backup services
Demystify how you can address your data protection needs in your small- to medium-sized business and select the best online backup service to meet your needs.
Getting started with customer-focused identity management
Learn why identity is a fundamental requirement to digital growth, and how without it there is no way to identify and engage customers in a meaningful way.
Reg Reader Research: SaaS based Email and Office Productivity Tools
Read this Reg reader report which provides advice and guidance for SMBs towards the use of SaaS based email and Office productivity tools.
How to simplify SSL certificate management
Simple steps to take control of SSL certificates across the enterprise, and recommendations centralizing certificate management throughout their lifecycle.
New hybrid storage solutions
Tackling data challenges through emerging hybrid storage solutions that enable optimum database performance whilst managing costs and increasingly large data stores.