Feeds

Intel's future Xeons to share sockets

Westmere mobo tock but no tick

Internet Security Threat Report 2014

Motherboard Glue

Exactly how this will translate into application performance will depend on how sensitive those applications are to memory. The Nehalem EP chips, code-named "Gainestown," are expected to come in two-core and four-core variants, with each core having two threads and with either 4 MB or 8 MB of L3 cache. These chips are basically a version of the Core i7 desktop chip reimplemented with symmetric multiprocessing extensions. Clock speeds are expected to range from 1.9 GHz to 3.2 GHz.

The high-end Nehalem EX processors, code-named "Beckton," will have up to eight cores, will be delivered by the end of the year and will use the "Boxboro" chipset that will also be used in the future "Poulson" Itanium processor. The Boxboro chipset will work with QPI to allow a "glueless" SMP configuration with up to eight processor sockets. Technically, the initial Opterons could do this two, by gluing together four two-way motherboards into a single system image, and it looks like Boxboro will glue together two four-socket machines to get an eight-way. The question with either approach is whether server OEMs will do it. Very few adopted the eight-way Opteron configuration.

The low-end Nehalem EN chips are tweaked versions of the Lynnfield chips used in desktops and made with 45 nanometer processes. They plug into a server platform called "Foxhollow" and use the Intel 5 series chipset used on desktops. If history is any guide, these single-socket server boards will have more I/O slots and possibly more main memory than their desktop counterparts.

Looking ahead to the Westmere generation, the future 32 nanometer chips will plug into the Foxhollow, Tylersburg, and Boxboro platforms. This is obviously something that server manufacturers want very much, since they do not like revving their hardware every year. It looks like Foxhollow gets launched in the second half of 2009, and Boxboro at the end of the year, and Tylersburg should have been here already if this roadmap is to scale.

The Westmere kickers to Nehalem EP chips (which have not been given a code name yet) are due around mid-2010, then, and the Clarkdale chip with its integrated graphics processor gets plunked into single-socket servers in early 2010. Don't expect a Westmere kicker to the high-end Nehalem EX until early 2011, it looks like.

The 32 nanometer shrink from Nehalem to Westmere should allow Intel to get clock speeds up around 4 GHz or so, compared to a little more than 3 GHz with Nehalems and their 45 nanometer processes. Or Intel could boost the core count and keep clocks about the same. The expectation is that Intel will go for speed, not cores. But the company could just as easily put two Westmere chips side-by-side in a single package instead of revving the cores, or leave graphics processors into some Westmere Xeons (as it did for the low-end Clarkdale chip) to use as a co-processor for applications.

It would be interesting to see HPC variants of Westmere chips with the graphics units embedded and then two-chip Westmere packages for regular commercial processing workloads. Intel could put other features inside a package as well - or just make the chip smaller and keep the thermals low, offsetting some of the higher heat that DDR3 main memory kicks out compared to DDR2 memory.

Out beyond that, Intel will launch a new "Sandy Bridge" chip architecture in 2010 or 2011 (it depends on the roadmap you look at) with 32 nanometer processes, and it will eventually shrink this family of chips using 22 nanometer processes in 2011 or 2012. ®

Top 5 reasons to deploy VMware with Tegile

More from The Register

next story
Docker's app containers are coming to Windows Server, says Microsoft
MS chases app deployment speeds already enjoyed by Linux devs
Intel, Cisco and co reveal PLANS to keep tabs on WORLD'S MACHINES
Connecting everything to everything... Er, good idea?
SDI wars: WTF is software defined infrastructure?
This time we play for ALL the marbles
'Urika': Cray unveils new 1,500-core big data crunching monster
6TB of DRAM, 38TB of SSD flash and 120TB of disk storage
Facebook slurps 'paste sites' for STOLEN passwords, sprinkles on hash and salt
Zuck's ad empire DOESN'T see details in plain text. Phew!
'Hmm, why CAN'T I run a water pipe through that rack of media servers?'
Leaving Las Vegas for Armenia kludging and Dubai dune bashing
Windows 10: Forget Cloudobile, put Security and Privacy First
But - dammit - It would be insane to say 'don't collect, because NSA'
Oracle hires former SAP exec for cloudy push
'We know Larry said cloud was gibberish, and insane, and idiotic, but...'
prev story

Whitepapers

Forging a new future with identity relationship management
Learn about ForgeRock's next generation IRM platform and how it is designed to empower CEOS's and enterprises to engage with consumers.
Win a year’s supply of chocolate
There is no techie angle to this competition so we're not going to pretend there is, but everyone loves chocolate so who cares.
Why cloud backup?
Combining the latest advancements in disk-based backup with secure, integrated, cloud technologies offer organizations fast and assured recovery of their critical enterprise data.
High Performance for All
While HPC is not new, it has traditionally been seen as a specialist area – is it now geared up to meet more mainstream requirements?
Saudi Petroleum chooses Tegile storage solution
A storage solution that addresses company growth and performance for business-critical applications of caseware archive and search along with other key operational systems.