Feeds

Flash cells near shrinkage limit

Volatility threatens non-volatile memory

Choosing a cloud hosting partner with confidence

IEDM You call it flash memory. The engineers at this week's International Electron Device Meeting (IEDM) in San Francisco call it non-volatile memory.

According to Stefan Lai of BeingAMC, there's plenty of money to be made in non-volatile memory, whether it's based on the common flash technology or on emerging replacements. A cool $20bn was spent on non-volatile memory in 2008, with $25bn expected next year, financial Armageddon or no financial Armageddon.

There's one big problem, though: Current non-volatile technology is running up against a "natural limit," Lai said during an IEDM talk entitled "Non-Volatile Memory Technologies: the Quest for Ever Lower Cost". And, no, it's not that it is getting harder and harder to make smaller and smaller non-volatile memory chips. Lai says that the lithographic technologies needed to shrink the chip elements are good down to at least 22nm, maybe even further.

No, the problem is much simpler - and more intractable - than that. Memory-cell sizes are getting so small that they soon won't have room for enough electrons to keep the non-volatile memory, well, non-volatile.

"When I started," the veteran memory designer said, "I had a hundred thousand electrons [in a cell], so if I lost one per day, I had no problem." Today, there's a problem. As Lai puts it, in upcoming memory cells, "you're counting tens of electrons."

It doesn't take a statistical genius to see that losing one electron out of tens will be a far bigger deal than losing one electron out of 100,000. The problem will be - do the math - 10,000 times bigger.

Something needs to be done - and it needs to be done cheaply and reliably. Chip elements are now around 1000 times smaller than they were when non-volatile memory started to make its move in the mid-1980s. Prices have shrunk as well - they're now about one two-thousandth of what they were in 1986, said Lai.

According to Lai, the $1-per-gigabyte price threshold is the "tipping point" for flash acceptance - and he made a point of saying "and as those of you in business understand, price and cost are not the same thing." We're at that $1/GBybte point today - and there's no going back.

So how will the non-volatile industry keep things cheap while continuing to expand capacity? Before you read on, be forewarned: The acronyms will come thick and fast.

Lai says that the answer is multi-layer cells (MLC) using cross-point memory (CPM) architectures - cross-point memory being, in essence, an architecture in which a memory cell is formed where a metal memory bus and a silicon memory bus meet, or "cross". A cross-point architecture can be quite dense in cells per volume of chip.

Lai says that there are a few competing technologies for the cell in his envisioned non-volatile savior, but he's a fan of Phase-Change Memory (PCM). According to Lai, compared to its two main competitors, Resistive RAM (RRAM) and Programmable Metallization Cell (PMC), PCM is "the most developed so far." It also has a "RAM-like" read/write life of 10^10 cycles, its switching time is good ("and improving"), and its switching current is high ("and improving").

RRAM, according to Lai, is hampered by a low read/write-cycle lifetime and the fact that it hasn't yet been manufactured in high densities. PMC has a good life expectancy of 10^6 cycles, and a fast switching rate. One reason that Lai doesn't lean towards PMC, however, is that its low voltage requirements make it - according to Lai - more susceptible to signal variations and noise.

Lai ended his talk with his vision of PCM replacing most DRAM in computer systems - a computer's speedy DDRx DRAM allocation would be small compared to a large complement of PCM, and it would act as a quick-access buffer for the PCM. To achieve this, Lai suggested that memory-module manufacturers take a page from hard-disk drive (HDD) manufacturers, and build error-detection and correction more robustly into their systems, much as solid-state drive (SSD) manufacturers have begun to do.

And so, according to LAI - uh, Lai - expect to see MLC PCM CPM in DDRx DRAM with HDD and SSD ECC.

OK? ®

Secure remote control for conventional and virtual desktops

More from The Register

next story
GRAV WAVE DRAMA: 'Big Bang echo' may have been grit on the scanner – boffins
Exit Planet Dust on faster-than-light expansion of universe
Mine Bitcoins with PENCIL and PAPER
Forget Sudoku, crunch SHA-256 algos
SpaceX Dragon cargo truck flies 3D printer to ISS: Clawdown in 3, 2...
Craft berths at space station with supplies, experiments, toys
'This BITE MARK is a SMOKING GUN': Boffins probe ancient assault
Tooth embedded in thigh bone may tell who pulled the trigger
DOLPHINS SMELL MAGNETS – did we hear that right, boffins?
Xavier's School for Gifted Magnetotaceans
Big dinosaur wowed females with its ENORMOUS HOOTER
That's right, Doris, I've got biggest snout in the prehistoric world
Japanese volcano eruption reportedly leaves 31 people presumed dead
Hopes fade of finding survivors on Mount Ontake
That glass of water you just drank? It was OLDER than the SUN
One MEELLION years older. Some of it anyway
Canberra drone team dances a samba in Outback Challenge
CSIRO's 'missing bushwalker' found and watered
prev story

Whitepapers

Forging a new future with identity relationship management
Learn about ForgeRock's next generation IRM platform and how it is designed to empower CEOS's and enterprises to engage with consumers.
Storage capacity and performance optimization at Mizuno USA
Mizuno USA turn to Tegile storage technology to solve both their SAN and backup issues.
The next step in data security
With recent increased privacy concerns and computers becoming more powerful, the chance of hackers being able to crack smaller-sized RSA keys increases.
Security for virtualized datacentres
Legacy security solutions are inefficient due to the architectural differences between physical and virtual environments.
A strategic approach to identity relationship management
ForgeRock commissioned Forrester to evaluate companies’ IAM practices and requirements when it comes to customer-facing scenarios versus employee-facing ones.