Feeds

Chip boffins hone silicon-brain interface

First slugs. Then humans

Build a business case: developing custom apps

IEDM The International Electron Device Meeting (IEDM) opened today in San Francisco, the annual IEEE-sponsored gathering of the world's top 1,500 semiconductor engineers. From the opening session, it was clear there's a lot going on in their fertile minds - including plans to get devices inside your mind. Literally.

The first talk in this morning's opening Plenary Session was "Electronic and Ionic Devices: Semiconductor Chips with Brain Tissue." Yes, you read that correctly: brain tissue. For half an hour, Peter Fromherz of Munich's Max Planck Institute for Biochemistry held a tough crowd's close attention as he described his work on silicon-to-neuron interfaces.

According to Fromherz, although the research he and his team are undertaking to create interfaces between ionic devices such as nerve cells and electronic devices such as chips is still in its early stages, its history dates back to 1783, when Luigi Galvani (as many of us were taught back in high school) first made a frog's amputated leg twitch by touching it with a spark.

Things have gotten quite a bit more sophisticated in the intervening 225 years - including, for example, in-brain electrical stimulation of Parkinson's disease patients - but a safe, stable, reliable, and rugged brain/chip interface remains elusive.

The brain is an interconnected morass of neurons. Any comprehensive electronic interface with it would need not only to have physical contact with, as Fromherz said, "hundreds of thousands or millions of contact sites." But those sites would have to be stable both in placement and biochemical interaction. You don't want them firing up the wrong neurons, poking them destructively, or chemically interacting with them in nasty ways, do you?

Fromherz cited three main directions for hybrid-neuroelectronics research: neurosensorics, neuroprosthetics, and neurocomputing. The first investigates devices that could study the brain, the second focuses on creating devices that could replace or supplement organic functions such as sight and hearing, and the third explores using brain tissue to inform computing design and function.

As you might imagine, that third area - neurocomputing - is the furthest away, seeing as how tissue/chip interface development is still in its infancy. You can forget about organic computers floating in Mason jars for the time being.

Fromherz went on to describe in detail his team's early work on the cell/chip interface. Interestingly, the neurons that they used for testing weren't from humans - which, for some reason, The Reg finds a wee bit of a relief - but from slugs. It seems that slug neurons are quite large and thus easier to work with than mammalian neurons.

Secure remote control for conventional and virtual desktops

Next page: Silicon-Slug Talk

More from The Register

next story
LOHAN packs bags for SPACEPORT AMERICA!
Spanish launch goes titsup, we're off to the US of A
Gigantic toothless 'DRAGONS' dominated Earth's early skies
Gummy pterosaurs outlived toothy competitors
'Leccy racer whacks petrols in Oz race
ELMOFO rakes in two wins in sanctioned race
Boffins ID freakish spine-smothered prehistoric critter: The CLAW gave it away
Bizarre-looking creature actually related to velvet worms
CRR-CRRRK, beep, beep: Mars space truck backs out of slippery sand trap
Curiosity finds new drilling target after course correction
Astronomers scramble for obs on new comet
Amateur gets fifth confirmed discovery
Boffins build CYBORG-MOTHRA but not for evil: For search & rescue
This tiny bio-bot will chew through your clothes then save your life
Vulture 2 takes a battering in 100km/h test run
Still in one piece, but we're going to need MORE POWER
What does a flashmob of 1,024 robots look like? Just like this
Sorry, Harvard, did you say kilobots or KILLER BOTS?
prev story

Whitepapers

Implementing global e-invoicing with guaranteed legal certainty
Explaining the role local tax compliance plays in successful supply chain management and e-business and how leading global brands are addressing this.
Top 10 endpoint backup mistakes
Avoid the ten endpoint backup mistakes to ensure that your critical corporate data is protected and end user productivity is improved.
Top 8 considerations to enable and simplify mobility
In this whitepaper learn how to successfully add mobile capabilities simply and cost effectively.
Rethinking backup and recovery in the modern data center
Combining intelligence, operational analytics, and automation to enable efficient, data-driven IT organizations using the HP ABR approach.
Reg Reader Research: SaaS based Email and Office Productivity Tools
Read this Reg reader report which provides advice and guidance for SMBs towards the use of SaaS based email and Office productivity tools.