Feeds

Chip boffins hone silicon-brain interface

First slugs. Then humans

Intelligent flash storage arrays

IEDM The International Electron Device Meeting (IEDM) opened today in San Francisco, the annual IEEE-sponsored gathering of the world's top 1,500 semiconductor engineers. From the opening session, it was clear there's a lot going on in their fertile minds - including plans to get devices inside your mind. Literally.

The first talk in this morning's opening Plenary Session was "Electronic and Ionic Devices: Semiconductor Chips with Brain Tissue." Yes, you read that correctly: brain tissue. For half an hour, Peter Fromherz of Munich's Max Planck Institute for Biochemistry held a tough crowd's close attention as he described his work on silicon-to-neuron interfaces.

According to Fromherz, although the research he and his team are undertaking to create interfaces between ionic devices such as nerve cells and electronic devices such as chips is still in its early stages, its history dates back to 1783, when Luigi Galvani (as many of us were taught back in high school) first made a frog's amputated leg twitch by touching it with a spark.

Things have gotten quite a bit more sophisticated in the intervening 225 years - including, for example, in-brain electrical stimulation of Parkinson's disease patients - but a safe, stable, reliable, and rugged brain/chip interface remains elusive.

The brain is an interconnected morass of neurons. Any comprehensive electronic interface with it would need not only to have physical contact with, as Fromherz said, "hundreds of thousands or millions of contact sites." But those sites would have to be stable both in placement and biochemical interaction. You don't want them firing up the wrong neurons, poking them destructively, or chemically interacting with them in nasty ways, do you?

Fromherz cited three main directions for hybrid-neuroelectronics research: neurosensorics, neuroprosthetics, and neurocomputing. The first investigates devices that could study the brain, the second focuses on creating devices that could replace or supplement organic functions such as sight and hearing, and the third explores using brain tissue to inform computing design and function.

As you might imagine, that third area - neurocomputing - is the furthest away, seeing as how tissue/chip interface development is still in its infancy. You can forget about organic computers floating in Mason jars for the time being.

Fromherz went on to describe in detail his team's early work on the cell/chip interface. Interestingly, the neurons that they used for testing weren't from humans - which, for some reason, The Reg finds a wee bit of a relief - but from slugs. It seems that slug neurons are quite large and thus easier to work with than mammalian neurons.

Choosing a cloud hosting partner with confidence

Next page: Silicon-Slug Talk

More from The Register

next story
SECRET U.S. 'SPACE WARPLANE' set to return from SPY MISSION
Robot minishuttle X-37B returns after almost 2 years in orbit
No sail: NASA spikes Sunjammer
'Solar sail' demonstrator project binned
LOHAN crash lands on CNN
Overflies Die Welt en route to lively US news vid
You can crunch it all you like, but the answer is NOT always in the data
Hear that, 'data journalists'? Our analytics prof holds forth
Experts brand LOHAN's squeaky-clean box
Phytosanitary treatment renders Vulture 2 crate fit for export
Carry On Cosmonaut: Willful Child is a poor taste Star Trek parody
Cringeworthy, crude and crass jokes abound in Steven Erikson’s sci-fi debut
Origins of SEXUAL INTERCOURSE fished out of SCOTTISH LAKE
Fossil find proves it first happened 385 million years ago
America's super-secret X-37B plane returns to Earth after nearly TWO YEARS aloft
674 days in space for US Air Force's mystery orbital vehicle
prev story

Whitepapers

Forging a new future with identity relationship management
Learn about ForgeRock's next generation IRM platform and how it is designed to empower CEOS's and enterprises to engage with consumers.
Why cloud backup?
Combining the latest advancements in disk-based backup with secure, integrated, cloud technologies offer organizations fast and assured recovery of their critical enterprise data.
Win a year’s supply of chocolate
There is no techie angle to this competition so we're not going to pretend there is, but everyone loves chocolate so who cares.
High Performance for All
While HPC is not new, it has traditionally been seen as a specialist area – is it now geared up to meet more mainstream requirements?
Intelligent flash storage arrays
Tegile Intelligent Storage Arrays with IntelliFlash helps IT boost storage utilization and effciency while delivering unmatched storage savings and performance.