Feeds

IBM drops Power7 drain in 'Blue Waters'

Super efficiency

High performance access to file storage

Inside Blue Waters

The Blue Waters data center, according to Seminaro, will fit in around 10,000 square feet of space, comprised of 162 racks of servers, organized into three columns, with each column having six rows with nine racks each. The Power server that the Blue Waters machine is based on will be a kicker to the current Power 575, which has 16 dual-core Power6 processors crammed into a 2U chassis. This machine is notable in that it has water blocks right on the processors and main memory circuits and that it links right into the water cooling system of the data center. It doesn't rely on fans for cooling at all. (That 2U server is 24 inches wide, not the standard 19 inches, by the way).

IBM has not provided the specs of this future Power7 server, but it looks like IBM will put 64 cores in a 2U box, which is accomplished by putting two Power7 chips into a single ceramic package and sharing a single socket, with four sockets on the board. That's four times the cores and one half the number of sockets in the Power 575 available today. This 2U box is expected to be rated at around 2 teraflops and support up to 128 GB of main memory.

Those 64 Power7 cores per 2U box at around 2 teraflops provide considerably more oomph than the 602 gigaflops in the current Power 575 machine, which has only 16 cores. (And it looks like this expected rating for the Power7 chip is based on 4 GHz chip, if you do the math). Anyway, with 4 GHz cores, and 64 cores per box, that works out to Blue Waters being rated at 6.8 petaflops if IBM can cram 21 servers into a rack.

Back in July, people familiar with the Blue Waters project hinted to me that the clock speed on the Power7 chips might be more in the range of 3 GHz to 4 GHz, not the 4 GHz speed originally reported in El Reg, and they also said that these initial Power7 chips could actually be delivered in the Blue Waters machine sometime between the fall of 2009 and the spring of 2010, not all the way out in 2011. So with lower clock speeds, say 3 GHz, it might come in at only 5 petaflops or so.

As with the Power 575 "Hydro Cluster", as it is nicknamed, the Blue Waters machine will have chilled water from the building going right into the server. Instead of having external switching, the server will also have integrated InfiniBand switches for both server interconnect and for linking to storage. The Blue Waters data center will not have room-level air conditioning, either, and it will use water up to a 60 degree (F) temperature, which is sufficient to cool the racks of servers and saves on the energy bill back on the water chillers.

IBM will also be stepping down 13,000 volt AC power to 480 volt AC juice and feeding it directly into the servers. IBM could have distributed DC power directly to the servers, but NCSA didn't want to do that. It doesn't matter, through, because the Power7 server will have a single power supply that will span from 200 to 480 volts AC or from 400 to 600 volts DC, which means customers can change the way they distribute electricity and not have to change anything in the server.

The Blue Waters data center will also make use of air economizers, the HPC industry term for using outside air to help keep gear cool, something you can do in a temperate region - as Illinois certainly is - for many months of the year. The facility is designed to have about 17.6 megawatts of input power on the data center, supporting about 15 megawatts of IT load.

Seminaro says that IBM is estimating that the data center will have about 98 per cent power distribution efficiency and that depending on the time of the year, the cooling infrastructure will run at between 80 and 93 per cent efficiency. (In cooler weather, it will be more efficient thanks to the air economizers).

IBM expects the overall efficiency of the data center housing Blue Waters to be around 85 percent. So to power up a 300-watt device in this data center will only take about 350 watts of input power. That's a very big improvement. ®

High performance access to file storage

More from The Register

next story
Seagate brings out 6TB HDD, did not need NO STEENKIN' SHINGLES
Or helium filling either, according to reports
European Court of Justice rips up Data Retention Directive
Rules 'interfering' measure to be 'invalid'
Dropbox defends fantastically badly timed Condoleezza Rice appointment
'Nothing is going to change with Dr. Rice's appointment,' file sharer promises
Cisco reps flog Whiptail's Invicta arrays against EMC and Pure
Storage reseller report reveals who's selling what
Bored with trading oil and gold? Why not flog some CLOUD servers?
Chicago Mercantile Exchange plans cloud spot exchange
Just what could be inside Dropbox's new 'Home For Life'?
Biz apps, messaging, photos, email, more storage – sorry, did you think there would be cake?
IT bods: How long does it take YOU to train up on new tech?
I'll leave my arrays to do the hard work, if you don't mind
prev story

Whitepapers

Mainstay ROI - Does application security pay?
In this whitepaper learn how you and your enterprise might benefit from better software security.
Five 3D headsets to be won!
We were so impressed by the Durovis Dive headset we’ve asked the company to give some away to Reg readers.
3 Big data security analytics techniques
Applying these Big Data security analytics techniques can help you make your business safer by detecting attacks early, before significant damage is done.
The benefits of software based PBX
Why you should break free from your proprietary PBX and how to leverage your existing server hardware.
Mobile application security study
Download this report to see the alarming realities regarding the sheer number of applications vulnerable to attack, as well as the most common and easily addressable vulnerability errors.