Feeds

IBM drops Power7 drain in 'Blue Waters'

Super efficiency

Internet Security Threat Report 2014

A month ago, IBM and the University of Illinois broke ground for the data center that will eventually house the Power7-based "Blue Waters" massively parallel supercomputer. The data center, it turns out, is as tricky to design as the processor and server that will be humming along inside it.

During a talk at the recent SC2008 supercomputing event in Austin, Texas, someone said it would not be long before power companies would be giving away supercomputers to any governmental agency or corporation that signed a long-term power contract. This was a joke. But it brings into sharp focus the fact that power and cooling are the main limitations on scalability for supercomputers. That's been the case since the first Cray-1 vector super came out in 1976.

Stephen Elbert, a researcher at the Pacific Northwest National Laboratory, explained that there are plenty of data centers out there burning 60 to 70 megawatts and that a few have already broken through the 100 megawatts barrier. "Beyond that, you have to be your own power company." Or, to do a deal with one, as Google has done with the Bonneville Power Administration in its The Dalles, Oregon data center.

The biggest problem facing data centers, according to Ed Seminaro, chief Unix hardware architect at IBM and one of the people responsible for the Blue Waters project, is the inefficiency of the data center itself. Many of the tricks that IBM will be using in the data center that houses Blue Waters will probably be considered by other computing facilities and server makers. The reason is simple: There is no other way to get more computing done than focus on the data center.

By Seminaro's calculations, in the typical HPC data center, a 300 watt device running in a data center requires 800 watts of input power. "The efficiency is just awful," he said. From that 800 watts of input power required for a 300 watt server, the data center's power conversion hardware (including uninterruptible power supplies and AC distribution units) consumes 160 watts; cooling towers, condensers, evaporators, and air movers eat 140 watts. The cooling equipment inside the device (fans and blowers, but sometimes pumps for water blocks and jackets) eats another 50 watts.

The power supplies, which step down the juice so it can be consumed by the server itself, eats another 150 watts of that 800 watts of input power. To idealize this, it takes 2.67 units of server power to actually run a single server. And on a multi-petaflops performance scale, this kind of inefficiency gets very costly, very fast.

That's why the University of Illinois and the Blue Waters design is set to become the standard bearer for Power-based HPC server performance in the coming years, much as Lawrence Livermore National Lab has been for a decade with IBM's ASCI Purple and BlueGene/L supers.

IBM has been vague about the Blue Waters design, which seeks to create a multi-petaflops machine using approximately 200,000 Power7 processor cores. In the Blue Waters announcement back in July, all that IBM has said is that Power7 chips will be implemented in a 45 nanometer process and will have multiple cores, meaning more than two. But Ross Mauri, general manager of IBM's Power Systems division, has separately confirmed to me that Power7 will be an eight-core processor.

(He did not say what kind of cores would be in there. It could be a mix of Power and other vector cores, much like the Cell Power chip used in game consoles and in supercomputers today. This chip has a single 64-bit Power core and eight vector-style coprocessors).

According to an early presentation of the National Center for Supercomputing Applications (NCSA) at the University of Illinois, the Blue Eaters machine is supposed to have more than 800 TB of main memory (with at least 32 GB of main memory per SMP node). The initial goal is for 100 Gb/sec of external bandwidth, eventually quadrupling that to 400 Gb/sec.

Top 5 reasons to deploy VMware with Tegile

Next page: Inside Blue Waters

More from The Register

next story
Docker's app containers are coming to Windows Server, says Microsoft
MS chases app deployment speeds already enjoyed by Linux devs
'Hmm, why CAN'T I run a water pipe through that rack of media servers?'
Leaving Las Vegas for Armenia kludging and Dubai dune bashing
SDI wars: WTF is software defined infrastructure?
This time we play for ALL the marbles
'Urika': Cray unveils new 1,500-core big data crunching monster
6TB of DRAM, 38TB of SSD flash and 120TB of disk storage
Facebook slurps 'paste sites' for STOLEN passwords, sprinkles on hash and salt
Zuck's ad empire DOESN'T see details in plain text. Phew!
Windows 10: Forget Cloudobile, put Security and Privacy First
But - dammit - It would be insane to say 'don't collect, because NSA'
Oracle hires former SAP exec for cloudy push
'We know Larry said cloud was gibberish, and insane, and idiotic, but...'
Symantec backs out of Backup Exec: Plans to can appliance in Jan
Will still provide support to existing customers
prev story

Whitepapers

Forging a new future with identity relationship management
Learn about ForgeRock's next generation IRM platform and how it is designed to empower CEOS's and enterprises to engage with consumers.
Win a year’s supply of chocolate
There is no techie angle to this competition so we're not going to pretend there is, but everyone loves chocolate so who cares.
Why cloud backup?
Combining the latest advancements in disk-based backup with secure, integrated, cloud technologies offer organizations fast and assured recovery of their critical enterprise data.
High Performance for All
While HPC is not new, it has traditionally been seen as a specialist area – is it now geared up to meet more mainstream requirements?
Saudi Petroleum chooses Tegile storage solution
A storage solution that addresses company growth and performance for business-critical applications of caseware archive and search along with other key operational systems.